Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
BMC Genomics ; 25(1): 83, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245685

RESUMEN

BACKGROUND: Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS: In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS: Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.


Asunto(s)
Zingiber officinale , Zingiber officinale/genética , Filogenia , Perfilación de la Expresión Génica , Fosfoproteínas Fosfatasas/genética , Genoma de Planta , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256002

RESUMEN

The domains of unknown function (DUF) superfamilies contain proteins with conserved amino acid sequences without known functions. Among them, DUF668 was indicated widely involving the stress response of plants. However, understanding ZoDUF668 is still lacking. Here, 12 ZoDUF668 genes were identified in ginger by the bioinformatics method and unevenly distributed on six chromosomes. Conserved domain analysis showed that members of the same subfamily had similar conserved motifs and gene structures. The promoter region of ZoDUF668s contained the light, plant hormone and stress-responsive elements. The prediction of miRNA targeting relationship showed that nine ginger miRNAs targeted four ZoDUF668 genes through cleavage. The expression patterns of 12 ZoDUF668 genes under biotic and abiotic stress were analyzed using RT-qPCR. The results showed that the expression of seven ZoDUF668 genes was significantly downregulated under Fusarium solani infection, six ZoDUF668 genes were upregulated under cold stress, and five ZoDUF668 genes were upregulated under waterlogging stress. These results indicate that the ZoDUF668 gene has different expression patterns under different stress conditions. This study provides excellent candidate genes and provides a reference for stress-resistance research in ginger.


Asunto(s)
Fusariosis , MicroARNs , Zingiber officinale , Zingiber officinale/genética , Secuencia de Aminoácidos , Respuesta al Choque por Frío/genética , Biología Computacional , MicroARNs/genética
3.
J Nanobiotechnology ; 21(1): 2, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593514

RESUMEN

BACKGROUND: Silica nanoparticles (SiNPs) have been demonstrated to have beneficial effects on plant growth and development, especially under biotic and abiotic stresses. However, the mechanisms of SiNPs-mediated plant growth strengthening are still unclear, especially under field condition. In this study, we evaluated the effect of SiNPs on the growth and sugar and hormone metabolisms of wheat in the field. RESULTS: SiNPs increased tillers and elongated internodes by 66.7% and 27.4%, respectively, resulting in a larger biomass. SiNPs can increase the net photosynthetic rate by increasing total chlorophyll contents. We speculated that SiNPs can regulate the growth of leaves and stems, partly by regulating the metabolisms of plant hormones and soluble sugar. Specifically, SiNPs can increase auxin (IAA) and fructose contents, which can promote wheat growth directly or indirectly. Furthermore, SiNPs increased the expression levels of key pathway genes related to soluble sugars (SPS, SUS, and α-glucosidase), chlorophyll (CHLH, CAO, and POR), IAA (TIR1), and abscisic acid (ABA) (PYR/PYL, PP2C, SnRK2, and ABF), whereas the expression levels of genes related to CTKs (IPT) was decreased after SiNPs treatment. CONCLUSIONS: This study shows that SiNPs can promote wheat growth and provides a theoretical foundation for the application of SiNPs in field conditions.


Asunto(s)
Nanopartículas , Triticum , Triticum/metabolismo , Dióxido de Silicio , Clorofila , Azúcares , Hormonas
4.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139237

RESUMEN

Sugars will eventually be exported transporters (SWEETs) are a novel class of sugar transport proteins that play a crucial role in plant growth, development, and response to stress. However, there is a lack of systematic research on SWEETs in Capsicum annuum L. In this study, 33 CaSWEET genes were identified through bioinformatics analysis. The Ka/Ks analysis indicated that SWEET genes are highly conserved not only among peppers but also among Solanaceae species and have experienced strong purifying selection during evolution. The Cis-elements analysis showed that the light-responsive element, abscisic-acid-responsive element, jasmonic-acid-responsive element, and anaerobic-induction-responsive element are widely distributed in the promoter regions of CaSWEETs. The expression pattern analysis revealed that CaSWEETs exhibit tissue specificity and are widely involved in pepper growth, development, and stress responses. The post-transcription regulation analysis revealed that 20 pepper miRNAs target and regulate 16 CaSWEETs through cleavage and translation inhibition mechanisms. The pathogen inoculation assay showed that CaSWEET16 and CaSWEET22 function as susceptibility genes, as the overexpression of these genes promotes the colonization of pathogens, whereas CaSWEET31 functions as a resistance gene. In conclusion, through systematic identification and characteristic analysis, a comprehensive understanding of CaSWEET was obtained, which lays the foundation for further studies on the biological functions of SWEET genes.


Asunto(s)
Capsicum , Capsicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Genes de Plantas , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Filogenia
5.
J Appl Microbiol ; 133(4): 2642-2654, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35892189

RESUMEN

AIMS: The current study aimed to determine the chemical compositions of ginger extract (GE) and to assess the antibacterial activities of GE against the ginger bacterial wilt pathogen Ralstonia solanacearum and to screen their mechanisms of action. METHODS AND RESULTS: A total of 393 compounds were identified by using ultra-performance liquid chromatography and tandem-mass spectrometry. The antibacterial test indicated that GE had strong antibacterial activity against R. solanacearum and that the bactericidal effect exhibited a dose-dependent manner. The minimum inhibitory concentration and minimum bactericidal concentration of R. solanacearum were 3.91 and 125 mg/ml, respectively. The cell membrane permeability and integrity of R. solanacearum were destroyed by GE, resulting in cell content leakage, such as electrolytes, nucleic acids, proteins, extracellular adenosine triphosphate and exopoly saccharides. In addition, the activity of cellular succinate dehydrogenase and alkaline phosphatase of R. solanacearum decreased gradually with an increase in the GE concentration. Scanning electron microscopy analysis revealed that GE treatment changed the morphology of the R. solanacearum cells. Further experiments demonstrated that GE delayed or slowed the occurrence of bacterial wilt on ginger. CONCLUSIONS: GE has a significant antibacterial effect on R. solanacearum, and the antibacterial effect is concentration dependent. The GE treatments changed the morphology, destroyed membrane permeability and integrity, reduced key enzyme activity and inhibit the synthesis of the virulence factor EPS of R. solanacearum. GE significantly controlled the bacterial wilt of ginger during infection. SIGNIFICANCE AND IMPACT OF THE STUDY: This research provides insight into the antimicrobial mechanism of GE against R. solanacearum, which will open a new application field for GE.


Asunto(s)
Ácidos Nucleicos , Ralstonia solanacearum , Solanum lycopersicum , Zingiber officinale , Adenosina Trifosfato , Fosfatasa Alcalina/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Extractos Vegetales , Succinato Deshidrogenasa/farmacología , Factores de Virulencia
6.
BMC Plant Biol ; 20(1): 359, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727369

RESUMEN

BACKGROUNDS: C2H2-type zinc finger protein (ZFPs) form a relatively large family of transcriptional regulators in plants, and play many roles in plant growth, development, and stress response. However, the comprehensive analysis of C2H2 ZFPs in cucumber (CsZFPs) and their regulation function in cucumber are still lacking. RESULTS: In the current study, the whole genome identification and characterization of CsZFPs, including the gene structure, genome localization, phylogenetic relationship, and gene expression were performed. Functional analysis of 4 selected genes by transient transformation were also conducted. A total of 129 full-length CsZFPs were identified, which could be classified into four groups according to the phylogenetic analysis. The 129 CsZFPs unequally distributed on 7 chromosomes. Promoter cis-element analysis showed that the CsZFPs might involve in the regulation of phytohormone and/or abiotic stress response, and 93 CsZFPs were predicted to be targeted by one to 20 miRNAs. Moreover, the subcellular localization analysis indicated that 10 tested CsZFPs located in the nucleus and the transcriptome profiling analysis of CsZFPs demonstrated that these genes are involved in root and floral development, pollination and fruit spine. Furthermore, the transient overexpression of Csa1G085390 and Csa7G071440 into Nicotiana benthamiana plants revealed that they could decrease and induce leave necrosis in response to pathogen attack, respectively, and they could enhance salt and drought stresses through the initial induction of H2O2. In addition, Csa4G642460 and Csa6G303740 could induce cell death after 5 days transformation. CONCLUSIONS: The identification and function analysis of CsZFPs demonstrated that some key individual CsZFPs might play essential roles in response to biotic and abiotic stresses. These results could lay the foundation for understanding the role of CsZFPs in cucumber development for future genetic engineering studies.


Asunto(s)
Dedos de Zinc CYS2-HIS2/genética , Cucumis sativus/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Muerte Celular/genética , Mapeo Cromosómico , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Sequías , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Peróxido de Hidrógeno/metabolismo , MicroARNs , Filogenia , Células Vegetales , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Nicotiana/genética , Nicotiana/microbiología
7.
BMC Plant Biol ; 19(1): 345, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31390991

RESUMEN

BACKGROUND: Aquaporin (AQP) proteins comprise a group of membrane intrinsic proteins (MIPs) that are responsible for transporting water and other small molecules, which is crucial for plant survival under stress conditions including salt stress. Despite the vital role of AQPs, little is known about them in cucumber (Cucumis sativus L.). RESULTS: In this study, we identified 39 aquaporin-encoding genes in cucumber that were separated by phylogenetic analysis into five sub-families (PIP, TIP, NIP, SIP, and XIP). Their substrate specificity was then assessed based on key amino acid residues such as the aromatic/Arginine (ar/R) selectivity filter, Froger's positions, and specificity-determining positions. The putative cis-regulatory motifs available in the promoter region of each AQP gene were analyzed and results revealed that their promoter regions contain many abiotic related cis-regulatory elements. Furthermore, analysis of previously released RNA-seq data revealed tissue- and treatment-specific expression patterns of cucumber AQP genes (CsAQPs). Three aquaporins (CsTIP1;1, CsPIP2;4, and CsPIP1;2) were the most transcript abundance genes, with CsTIP1;1 showing the highest expression levels among all aquaporins. Subcellular localization analysis in Nicotiana benthamiana epidermal cells revealed the diverse and broad array of sub-cellular localizations of CsAQPs. We then performed RNA-seq to identify the expression pattern of CsAQPs under salt stress and found a general decreased expression level of root CsAQPs. Moreover, qRT-PCR revealed rapid changes in the expression levels of CsAQPs in response to diverse abiotic stresses including salt, polyethylene glycol (PEG)-6000, heat, and chilling stresses. Additionally, transient expression of AQPs in N. benthamiana increased leaf water loss rate, suggesting their potential roles in the regulation of plant water status under stress conditions. CONCLUSIONS: Our results indicated that CsAQPs play important roles in response to salt stress. The genome-wide identification and primary function characterization of cucumber aquaporins provides insight to elucidate the complexity of the AQP gene family and their biological functions in cucumber.


Asunto(s)
Acuaporinas/fisiología , Cucumis sativus/genética , Proteínas de Plantas/fisiología , Acuaporinas/genética , Acuaporinas/metabolismo , Cucumis sativus/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Peróxido de Hidrógeno/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Transcriptoma , Agua/metabolismo
8.
BMC Plant Biol ; 19(1): 164, 2019 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-31029105

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are 3'-5' head-to-tail covalently closed non-coding RNA that have been proved to play essential roles in many cellular and developmental processes. However, no information relate to cucumber circRNAs is available currently, especially under salt stress condition. RESULTS: In this study, we sequenced circRNAs in cucumber and a total of 2787 were identified, with 1934 in root and 44 in leaf being differentially regulated under salt stress. Characteristics analysis of these circRNAs revealed following features: most of them are exon circRNAs (79.51%) and they prefer to arise from middle exon(s) of parent genes (2035/2516); moreover, most of circularization events (88.3%) use non-canonical-GT/AG splicing signals; last but not least, pairing-driven circularization is not the major way to generate cucumber circRNAs since very few circRNAs (18) contain sufficient flanking complementary sequences. Annotation and enrichment analysis of both parental genes and target mRNAs were launched to uncover the functions of differentially expressed circRNAs induced by salt stress. The results showed that circRNAs may be paly roles in salt stress response by mediating transcription, signal transcription, cell cycle, metabolism adaptation, and ion homeostasis related pathways. Moreover, circRNAs may function to regulate proline metabolisms through regulating associated biosynthesis and degradation genes. CONCLUSIONS: The present study identified large number of cucumber circRNAs and function annotation revealed their possible biological roles in response to salt stress. Our findings will lay a solid foundation for further structure and function studies of cucumber circRNAs.


Asunto(s)
Cucumis sativus/genética , Cucumis sativus/fisiología , ARN de Planta/genética , ARN/genética , Estrés Salino/genética , Secuencia de Bases , Biomasa , Cucumis sativus/crecimiento & desarrollo , Exones/genética , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas , Transporte Iónico , MicroARNs/genética , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Raíces de Plantas/genética , Raíces de Plantas/fisiología , ARN/metabolismo , ARN Circular , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/metabolismo
9.
Ecotoxicol Environ Saf ; 174: 245-254, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30831473

RESUMEN

Salinity decreases the yield and quality of crops. Silicon (Si) has been widely reported to have beneficial effects on plant growth and development under salt stress. However, the mechanism is still poorly understood. In an attempt to identify genes or gene networks that may be orchestrated to improve salt tolerance of cucumber plants, we sequenced the transcriptomes of both control and salt-stressed cucumber leaves in the presence or absence of added Si. Seedlings of cucumber 'JinYou 1' were subjected to salt stress (75 mM NaCl) without or with addition of 0.3 mM Si. Plant growth, photosynthetic gas exchange and transcriptomic dynamics were investigated. The results showed that Si addition improved the growth and photosynthetic performance of cucumber seedlings under salt stress. The comparative transcriptome analysis revealed that Si played an important role in shaping the transcriptome of cucumber: the expressions of 1469 genes were altered in response to Si treatment in the control conditions, and these genes were mainly involved in ion transport, hormone and signal transduction, biosynthetic and metabolic processes, and stress and defense responses. Under salt stress alone, 1482 genes with putative functions associated with metabolic processes and responses to environmental stimuli have changed their expression levels. Si treatment shifted the transcriptome of salt-stressed cucumber back to that of the control, as evidenced that among the 708 and 774 genes that were up- or down-regulated under salt stress, a large majority of them (609 and 595, respectively) were reverted to the normal expression levels. These results suggest that Si may act as an elicitor to precondition cucumber plants and induce salt tolerance. The study may help us understand the mechanism for silicon-mediated salt tolerance and provide a theoretical basis for silicon application in crop production in saline soils.


Asunto(s)
Cucumis sativus/efectos de los fármacos , Estrés Salino/efectos de los fármacos , Silicatos/farmacología , Transcriptoma/efectos de los fármacos , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Teóricos , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/genética , Salinidad , Estrés Salino/genética , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Cloruro de Sodio/administración & dosificación
10.
Ecotoxicol Environ Saf ; 169: 8-17, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30412897

RESUMEN

Silicon can increase salt tolerance, but the underlying mechanism has remained unclear. Here, we investigated the effect of silicon on polyamine metabolism and the role of polyamine accumulation in silicon-mediated salt tolerance in cucumber. Seedlings of cucumber 'JinYou 1' were subjected to salt stress (75 mM NaCl) in the presence or absence of added 0.3 mM silicon. Plant growth, polyamine metabolism and effects of exogenous polyamines and polyamine synthesis inhibitor dicyclohexylammonium sulphate on oxidative damage were investigated. The results showed that salt stress inhibited plant growth and decreased leaf chlorophyll levels and the maximum quantum yield of PSII, and added silicon ameliorated these negative effects. Salt stress increased polyamine accumulation in the leaves and roots. Compared with salt stress alone, overall, silicon addition decreased free putrescine concentrations, but increased spermidine and spermine concentrations in both leaves and roots under salt stress. Silicon application resulted in increased polyamine levels under salt stress by promoting the activities of S-adenosylmethionine decarboxylase and arginine decarboxylase while inhibiting the activity of diamine oxidase. Exogenous application of spermidine and spermine alleviated salt-stress-induced oxidative damage, whereas polyamine synthesis inhibitor eliminated the silicon-mediated decrease in oxidative damage. The results suggest that silicon-enhanced polyamine accumulation in cucumber under salt stress may play a role in decreasing oxidative damage and therefore increase the salt tolerance.


Asunto(s)
Cucumis sativus/efectos de los fármacos , Poliaminas/metabolismo , Plantas Tolerantes a la Sal/efectos de los fármacos , Silicio/farmacología , Clorofila/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Putrescina/metabolismo , Tolerancia a la Sal , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Plantas Tolerantes a la Sal/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
11.
Int J Mol Sci ; 19(1)2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29280973

RESUMEN

Little information about the roles of circular RNAs (circRNAs) during potato-Pectobacterium carotovorum subsp. brasiliense (Pcb) interaction is currently available. In this study, we conducted the systematic identification of circRNAs from time series samples of potato cultivars Valor (susceptible) and BP1 (disease tolerant) infected by Pcb. A total of 2098 circRNAs were detected and about half (931, 44.38%) were intergenic circRNAs. And differential expression analysis detected 429 significantly regulated circRNAs. circRNAs play roles by regulating parental genes and sponging miRNAs. Gene Ontology (GO) enrichment of parental genes and miRNAs targeted mRNAs revealed that these differentially expressed (DE) circRNAs were involved in defense response (GO:0006952), cell wall (GO:0005199), ADP binding (GO:0043531), phosphorylation (GO:0016310), and kinase activity (GO:0016301), suggesting the roles of circRNAs in regulating potato immune response. Furthermore, weighted gene co-expression network analysis (WGCNA) found that circRNAs were closely related with coding-genes and long intergenic noncoding RNAs (lincRNAs). And together they were cultivar-specifically regulated to strengthen immune response of potato to Pcb infection, implying the roles of circRNAs in reprogramming disease responsive transcriptome. Our results will provide new insights into the potato-Pcb interaction and may lead to novel disease control strategy in the future.


Asunto(s)
Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , ARN de Planta/genética , ARN/genética , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , ARN Circular , Transcriptoma
12.
Plant Cell Rep ; 34(9): 1629-46, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26021845

RESUMEN

KEY MESSAGE: Silicon enhances root water uptake in salt-stressed cucumber plants through up-regulating aquaporin gene expression. Osmotic adjustment is a genotype-dependent mechanism for silicon-enhanced water uptake in plants. Silicon can alleviate salt stress in plants. However, the mechanism is still not fully understood, and the possible role of silicon in alleviating salt-induced osmotic stress and the underlying mechanism still remain to be investigated. In this study, the effects of silicon (0.3 mM) on Na accumulation, water uptake, and transport were investigated in two cucumber (Cucumis sativus L.) cultivars ('JinYou 1' and 'JinChun 5') under salt stress (75 mM NaCl). Salt stress inhibited the plant growth and photosynthesis and decreased leaf transpiration and water content, while added silicon ameliorated these negative effects. Silicon addition only slightly decreased the shoot Na levels per dry weight in 'JinYou 1' but not in 'JinChun 5' after 10 days of stress. Silicon addition reduced stress-induced decreases in root hydraulic conductivity and/or leaf-specific conductivity. Expressions of main plasma membrane aquaporin genes in roots were increased by added silicon, and the involvement of aquaporins in water uptake was supported by application of aquaporin inhibitor and restorative. Besides, silicon application decreased the root xylem osmotic potential and increased root soluble sugar levels in 'JinYou 1.' Our results suggest that silicon can improve salt tolerance of cucumber plants through enhancing root water uptake, and silicon-mediated up-regulation of aquaporin gene expression may in part contribute to the increase in water uptake. In addition, osmotic adjustment may be a genotype-dependent mechanism for silicon-enhanced water uptake in plants.


Asunto(s)
Cucumis sativus/fisiología , Raíces de Plantas/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Silicio/farmacología , Agua/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Transporte Biológico , Biomasa , Carbohidratos/análisis , Cucumis sativus/efectos de los fármacos , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Ditiotreitol/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Cloruro de Mercurio/farmacología , Ósmosis/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Transpiración de Plantas/efectos de los fármacos , Carácter Cuantitativo Heredable , Tolerancia a la Sal/genética , Plantones/efectos de los fármacos , Plantones/fisiología , Sodio/metabolismo , Solubilidad , Xilema/efectos de los fármacos , Xilema/fisiología
13.
Int J Biol Macromol ; 263(Pt 2): 130441, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417760

RESUMEN

Carbohydrates are exported by the SWEET family of transporters, which is a novel class of carriers that can transport sugars across cell membranes and facilitate sugar's long-distance transport from source to sink organs in plants. SWEETs play crucial roles in a wide range of physiologically important processes by regulating apoplastic and symplastic sugar concentrations. These processes include host-pathogen interactions, abiotic stress responses, and plant growth and development. In the present review, we (i) describe the structure and organization of SWEETs in the cell membrane, (ii) discuss the roles of SWEETs in sugar loading and unloading processes, (iii) identify the distinct functions of SWEETs in regulating plant growth and development including flower, fruit, and seed development, (iv) shed light on the importance of SWEETs in modulating abiotic stress resistance, and (v) describe the role of SWEET genes during plant-pathogen interaction. Finally, several perspectives regarding future investigations for improving the understanding of sugar-mediated plant defenses are proposed.


Asunto(s)
Proteínas de Plantas , Plantas , Proteínas de Plantas/química , Plantas/genética , Plantas/metabolismo , Proteínas de Transporte de Membrana/genética , Carbohidratos , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
14.
Plant Physiol Biochem ; 207: 108392, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38301328

RESUMEN

Growth-regulating factors (GRFs) play crucial roles in plant growth, development, hormone signaling, and stress response. Despite their significance, the roles of GRFs in ginger remain largely unknown. Herein, 31 ginger ZoGRFs were identified and designated as ZoGRF1-ZoGRF31 according to their phylogenetic relationships. All ZoGRFs were characterized as unstable, hydrophilic proteins, with 29 predicted to be located in the nucleus. Functional cis-elements related to growth and development were enriched in ZoGRF's promoter regions. RNA-seq and RT-qPCR analysis revealed that ZoGRF12, ZoGRF24, and ZoGRF28 were highly induced in various growth and development stages, displaying differential regulation under waterlogging, chilling, drought, and salt stresses, indicating diverse expression patterns of ZoGRFs. Transient expression analysis in Nicotiana benthamiana indicated that overexpressing ZoGRF28 regulated the transcription levels of salicylic acid, jasmonic acid, and pattern-triggered immunity-related genes, increased chlorophyll content and contributed to reduced disease lesions and an increased net photosynthetic rate. This research lays the foundation for further understanding the biological roles of ZoGRFs.


Asunto(s)
Zingiber officinale , Zingiber officinale/genética , Filogenia , Fotosíntesis , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Transgenic Res ; 22(5): 1021-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23645501

RESUMEN

Tocochromanol, or vitamin E, plays a crucial role in human and animal nutrition and is synthesized only by photosynthetic organisms. γ-Tocopherol methyltransferase (γ-TMT), one of the key enzymes in the tocopherol biosynthetic pathway in plants, converts γ, δ-tocopherols into α-, ß-tocopherols. Tocopherol content was investigated in 15 soybean cultivars and GmTMT2 was isolated from five varieties based on tocopherol content. GmTMT2a was expressed in E. coli and the purified protein effectively converted γ-tocopherol into α-tocopherol in vitro. Overexpression of GmTMT2a enhanced α-tocopherol content 4-6-fold in transgenic Arabidopsis, and α-tocopherol content increased 3-4.5-fold in transgenic maize seed, which correlated with the accumulation of GmTMT2a. Transgenic corn that is α-tocopherol-rich may be beneficial for animal health and growth.


Asunto(s)
Arabidopsis/metabolismo , Glycine max/genética , Metiltransferasas/genética , Plantas Modificadas Genéticamente/metabolismo , Zea mays/metabolismo , alfa-Tocoferol/metabolismo , Arabidopsis/genética , Cromatografía Líquida de Alta Presión , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Escherichia coli , Metiltransferasas/metabolismo , Plantas Modificadas Genéticamente/genética , Zea mays/genética
16.
Protoplasma ; 260(4): 1221-1232, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36840780

RESUMEN

Sinopodophyllum hexandrum (Royle) T. S. Ying, an important source of podophyllotoxin (PTOX), has become a rare and endangered plant because of over-harvesting. Somatic embryogenesis (SE) is the main way of seedling rapid propagation and germplasm enhancement, but the regeneration of S. hexandrum has not been well established, and the PTOX biosynthesis abilities at different SE stages remain unclear. Therefore, it is extremely important to elucidate the SE mechanism of S. hexandrum and clarify the biosynthesis variation of PTOX. In this study, the transcriptomes of S. hexandrum at different SE stages were sequenced, the contents of PTOX and 4'-demethylepipodophyllotoxin were assayed, and the transcript expression patterns were validated by qRT-PCR. The results revealed that plant hormone (such as auxins, abscisic acid, zeatin, and gibberellins) related pathways were significantly enriched among different SE stages, indicating these plant hormones play important roles in SE of S. hexandrum; the expression levels of a series of PTOX biosynthesis related genes as well as PTOX and 4'-demethylepipodophyllotoxin contents were much higher in embryogenic callus stage than in the other stages, suggesting embryogenic callus stage has the best PTOX biosynthesis ability among different SE stages. This study will contribute to germplasm conservation and fast propagation of S. hexandrum, and facilitate the production of PTOX.


Asunto(s)
Berberidaceae , Podofilotoxina , Perfilación de la Expresión Génica , Berberidaceae/genética , Transcriptoma/genética , Reguladores del Crecimiento de las Plantas , Técnicas de Embriogénesis Somática de Plantas
17.
Plant Physiol Biochem ; 201: 107799, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37271022

RESUMEN

Storing postharvest ginger at low temperatures can extend its shelf life, but can also lead to chilling injury, loss of flavor, and excessive water loss. To investigate the effects of chilling stress on ginger quality, morphological, physiological, and transcriptomic changes were examined after storage at 26 °C, 10 °C, and 2 °C for 24 h. Compared to 26 °C and 10 °C, storage at 2 °C significantly increased the concentrations of lignin, soluble sugar, flavonoids, and phenolics, as well as the accumulation of H2O2, O2-, and thiobarbituric acid reactive substances (TBARS). Additionally, chilling stress inhibited the levels of indoleacetic acid, while enhancing gibberellin, abscisic acid, and jasmonic acid, which may have increased postharvest ginger's adaptation to chilling. Storage at 10 °C decreased lignin concentration and oxidative damage, and induced less fluctuant changes in enzymes and hormones than storage at 2 °C. RNA-seq revealed that the number of differentially expressed genes (DEGs) increased with decreasing temperature. Functional enrichment analysis of the 523 DEGs that exhibited similar expression patterns between all treatments indicated that they were primarily enriched in phytohormone signaling, biosynthesis of secondary metabolites, and cold-associated MAPK signaling pathways. Key enzymes related to 6-gingerol and curcumin biosynthesis were downregulated at 2 °C, suggesting that cold storage may negatively impact ginger quality. Additionally, 2 °C activated the MKK4/5-MPK3/6-related protein kinase pathway, indicating that chilling may increase the risk of ginger pathogenesis.


Asunto(s)
Transcriptoma , Zingiber officinale , Zingiber officinale/genética , Peróxido de Hidrógeno , Lignina , Hormonas
18.
Plants (Basel) ; 12(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36987019

RESUMEN

(1) Background: Salt stress is an abiotic factor that limits maize yield and quality. A highly salt-tolerance inbred AS5 and a salt-sensitive inbred NX420 collected from Ningxia Province, China, were used to identify new genes for modulating salt resistance in maize. (2) Methods: To understand the different molecular bases of salt tolerance in AS5 and NX420, we performed BSA-seq using an F2 population for two extreme bulks derived from the cross between AS5 and NX420. Transcriptomic analysis was also conducted for AS5 and NX420 at the seedling stage after treatment with 150 mM of NaCl for 14 days. (3) Results: AS5 had a higher biomass and lower Na+ content than NX420 in the seedling stage after treatment with 150 mM NaCl for 14 days. One hundred and six candidate regions for salt tolerance were mapped on all of the chromosomes through BSA-seq using F2 in an extreme population. Based on the polymorphisms identified between both parents, we detected 77 genes. A large number of differentially expressed genes (DEGs) at the seedling stage under salt stress between these two inbred lines were detected using transcriptome sequencing. GO analysis indicated that 925 and 686 genes were significantly enriched in the integral component of the membrane of AS5 and NX420, respectively. Among these results, two and four DEGs were identified as overlapping in these two inbred lines using BSA-seq and transcriptomic analysis, respectively. Two genes (Zm00001d053925 and Zm00001d037181) were detected in both AS5 and NX420; the transcription level of Zm00001d053925 was induced to be significantly higher in AS5 than in NX420 (41.99 times versus 6.06 times after 150 mM of NaCl treatment for 48 h), while the expression of Zm00001d037181 showed no significant difference upon salt treatment in both lines. The functional annotation of the new candidate genes showed that it was an unknown function protein. (4) Conclusions: Zm00001d053925 is a new functional gene responding to salt stress in the seedling stage, which provides an important genetic resource for salt-tolerant maize breeding.

19.
Ying Yong Sheng Tai Xue Bao ; 34(3): 825-834, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37087667

RESUMEN

The development and application of botanical insecticides is important for the sustainable development of green agriculture. The abuse of chemical pesticides has caused serious problems of environment and human health. Botanical insecticides have become an environment-friendly insecticides due to their nature, low toxicity, easy degradation and other advantages, which are an important field of insecticide development in the future. Although botanical insecticides have lots of advantages, there are still problems needed to be resolved, such as insecticidal plant species, impact assessment of botanical pesticide and separation and purification of active components. To excavate the resources of highly effective insecticidal plants and understand the mechanism of botanical insecticides, here we reviewed the progress of resources and active components of botanical insecticides, the mechanisms of action of botanical insecticides, the main active components and insecticidal properties of Zingiber officinale. Finally, we analyzed the difficulties faced in the research and development of botanical insecticides, prospected future directions, and discussed the active components of ginger. This review would provide reference for the deve-lopment of new botanical insecticides.


Asunto(s)
Insecticidas , Plaguicidas , Zingiber officinale , Humanos , Insecticidas/toxicidad , Insecticidas/química , Plantas , Agricultura
20.
Int J Biol Macromol ; 253(Pt 5): 127215, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37793527

RESUMEN

Light-harvesting chlorophyll a/b binding proteins are encoded by nucleus genes and widely involve in capturing light energy, transferring energy, and responding to various stresses. However, their roles in wheat photosynthesis and stress tolerance are largely unknown. Here, Triticum aestivumlight-harvesting chlorophyll a/b binding protein TaLhc2 was identified. It showed subcellular localization in chloroplast, contained light responsive cis-elements, and highly expressed in green tissues and down-regulated by multiple stresses. TaLhc2 promoted the colonization of hemi-biotrophic pathogen; further analysis showed that TaLhc2 strengthened BAX-induced cell death, enhanced the ROS accumulation, and up-regulated pathogenesis-related genes; those results suggested that TaLhc2 has adverse influence on host immunity and function as a susceptible gene, thus host decreased its expression when faced with pathogen infection. RT-qPCR results showed that TaLhc2 was down-regulated by drought and salt stresses, while TaLhc2 improved the ROS accumulation under the two stresses, suggesting TaLhc2 may participate in wheat responding to abiotic stress. Additionally, TaLhc2 can increase the content of total chlorophyll and carotenoid by 1.3 % and 2.9 %, increase the net photosynthetic rate by 18 %, thus promote plant photosynthesis. Conclusively, we preliminarily deciphered the function of TaLhc2 in biotic/abiotic stresses and photosynthesis, which laid foundation for its usage in wheat breeding.


Asunto(s)
Proteínas de Plantas , Triticum , Triticum/metabolismo , Clorofila A/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Especies Reactivas de Oxígeno/metabolismo , Plantas Modificadas Genéticamente/genética , Fotosíntesis , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA