Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Diabetes Obes Metab ; 26(5): 1593-1604, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38302734

RESUMEN

AIM: To provide a systematic overview of diabetes risk prediction models used for prediabetes screening to promote primary prevention of diabetes. METHODS: The Cochrane, PubMed, Embase, Web of Science and China National Knowledge Infrastructure (CNKI) databases were searched for a comprehensive search period of 30 August 30, 2023, and studies involving diabetes prediction models for screening prediabetes risk were included in the search. The Quality Assessment Checklist for Diagnostic Studies (QUADAS-2) tool was used for risk of bias assessment and Stata and R software were used to pool model effect sizes. RESULTS: A total of 29 375 articles were screened, and finally 20 models from 24 studies were included in the systematic review. The most common predictors were age, body mass index, family history of diabetes, history of hypertension, and physical activity. Regarding the indicators of model prediction performance, discrimination and calibration were only reported in 79.2% and 4.2% of studies, respectively, resulting in significant heterogeneity in model prediction results, which may be related to differences between model predictor combinations and lack of important methodological information. CONCLUSIONS: Numerous models are used to predict diabetes, and as there is an association between prediabetes and diabetes, researchers have also used such models for screening the prediabetic population. Although it is a new clinical practice to explore, differences in glycaemic metabolic profiles, potential complications, and methods of intervention between the two populations cannot be ignored, and such differences have led to poor validity and accuracy of the models. Therefore, there is no recommended optimal model, and it is not recommended to use existing models for risk identification in alternative populations; future studies should focus on improving the clinical relevance and predictive performance of existing models.


Asunto(s)
Diabetes Mellitus , Hipertensión , Estado Prediabético , Humanos , Estado Prediabético/diagnóstico , Estado Prediabético/epidemiología , Estado Prediabético/tratamiento farmacológico , China
2.
Neuroimage ; 284: 120463, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37989457

RESUMEN

How to retrieve latent neurobehavioural processes from complex neurobiological signals is an important yet unresolved challenge. Here, we develop a novel approach, orthogonal-Decoding multi-Cognitive Processes (DeCoP), to reveal underlying latent neurobehavioural processing and show that its performance is superior to traditional non-orthogonal decoding in terms of both false inference and robustness. Processing value and salience information are two fundamental but mutually confounded pathways of reward reinforcement essential for decision making. During reward/punishment anticipation, we applied DeCoP to decode brain-wide responses into spatially overlapping, yet functionally independent, evaluation and readiness processes, which are modulated differentially by meso­limbic vs nigro-striatal dopamine systems. Using DeCoP, we further demonstrated that most brain regions only encoded abstract information but not the exact input, except for dorsal anterior cingulate cortex and insula. Furthermore, we anticipate our novel analytical principle to be applied generally in decoding multiple latent neurobehavioral processes and thus advance both the design and hypothesis testing for cognitive tasks.


Asunto(s)
Encéfalo , Recompensa , Humanos , Encéfalo/fisiología , Refuerzo en Psicología , Mapeo Encefálico , Dopamina/fisiología , Imagen por Resonancia Magnética
3.
Clin Exp Immunol ; 214(1): 50-60, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37455659

RESUMEN

As the largest proportion of myeloid immune cells in tumors, macrophages play an important role in tumor growth and regression according to their different phenotypes, thus reprogramming macrophages has become a new research direction for cancer immunotherapy. Yeast-derived whole ß-glucan particles (WGPs) can induce M0 macrophages to differentiate into M1 macrophages and convert M2 macrophages and tumor-associated macrophages (TAMs) into M1 macrophages. In vitro, studies have confirmed that WGP-treated macrophages increase the activating receptors in natural killer cells (NK cells) and enhance the cytotoxicity of NK cells. The extracellular regulated protein kinases (ERK) signaling pathway is involved in WGP-mediated regulation of the macrophage phenotype. Further in vivo studies show that oral WGP can significantly delay tumor growth, which is related to the increased proportion of macrophages and NK cells, the macrophage phenotype reversal, and the enhancement of NK cell immune function. NK-cell depletion reduces the therapeutic efficacy of WGP in tumor-bearing mice. These findings revealed that in addition to T cells, NK cells also participate in the antitumor process of WGP. It was confirmed that WGP regulates the macrophage phenotype to regulate NK-cell function.


Asunto(s)
Neoplasias , beta-Glucanos , Animales , Ratones , Saccharomyces cerevisiae , beta-Glucanos/farmacología , beta-Glucanos/metabolismo , Macrófagos , Células Asesinas Naturales , Inmunidad
4.
J Am Chem Soc ; 144(41): 19017-19025, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36197334

RESUMEN

Hydrogels have been widely applied to understand the fundamental functions and mechanism of a natural extracellular matrix (ECM). However, revealing the high permeability of ECM through synthetic hydrogels is still challenged by constructing analogue networks with rigid and dynamic properties. Here, in this study, taking advantage of the rigidity and dynamic binding of DNA building blocks, we have designed a model hydrogel system with structural similarity to ECM, leading to enhanced diffusion for proteins compared with a synthetic polyacrylamide (PAAm) hydrogel. The molecular diffusion behaviors in such a rigid and dynamic network have been investigated both in experiments and simulations, and the dependence of diffusion coefficients with respect to molecular size exhibits a unique transition from a power law to an exponential function. A "shutter" model based on the rigid and dynamic molecular network has been proposed, which has successfully revealed how the rigidity and dynamic bond exchange determine the diffusion mechanism, potentially providing a novel perspective to understand the possible mechanism of enhanced diffusion behaviors in ECM.


Asunto(s)
Hidrogeles , Proteínas , Hidrogeles/química , Difusión , Matriz Extracelular , ADN/química
5.
Cancer Immunol Immunother ; 71(8): 2007-2028, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34982184

RESUMEN

Although therapeutic cancer vaccines have been gaining substantial ground, the development of cancer vaccines is impeded because of the undegradability of delivery systems, ineffective delivery of tumor antigens and weak immunogenicity of adjuvants. Here, we made use of a whole glucan particle (WGP) to encapsulate ovalbumin (OVA), thereby formulating a novel cancer vaccine. Results from in vitro experiments showed that WGP-OVA not only induced the activation of bone marrow-derived macrophages (BMDMs) including driving M0 BMDM polarization to the M1 phenotype, upregulating the costimulatory molecules and inducing the generation of cytokines, but also facilitated antigen presentation. After oral administration of the WGP-OVA formulation to mice with OVA-expressing tumors, these particles can increase tumor-infiltrating OVA-specific CD8+ CTLs and repolarize tumor-associated macrophages (TAMs) toward M1-like phenotype, which led to delayed tumor progression. These findings revealed that WGP could serve as both an antigen delivery system and an adjuvant system for promising cancer vaccines.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Adyuvantes Inmunológicos , Administración Oral , Animales , Glucanos/farmacología , Macrófagos , Ratones , Ratones Endogámicos C57BL , Neoplasias/terapia , Ovalbúmina
6.
Opt Express ; 29(15): 23292-23299, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614597

RESUMEN

ß-Ga2O3 semiconductor crystal is of wide band gap and high radiation resistance, which shows great potential for applications such as medical imaging, radiation detections, and nuclear physical experiments. However, developing ß-Ga2O3-based X-ray radiation detectors with high sensitivity, fast response speed, and excellent stability remains a challenge. Here we demonstrate a high-performance X-ray detector based on a Fe doped ß-Ga2O3 (ß-Ga2O3:Fe) crystal grown by the float-zone growth method, which consists of two vertical Ti/Au electrodes and a ß-Ga2O3:Fe crystal with high resistivity. The resistivity of the ß-Ga2O3:Fe crystal exceeds 1012 Ω cm owed to the compensation of the Fe ions and the free electrons. The detector shows short response time (0.2 s), high sensitivity (75.3 µC Gyair -1 cm-2), and high signal-to-noise ratio (100), indicating great potential for X-ray radiation detection.

7.
Opt Express ; 29(4): 6169-6178, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33726143

RESUMEN

ß-Ga2O3 is a new type of fast scintillator with potential applications in medical imaging and nuclear radiation detection with high count-rate situations. Because of the severe total internal reflection with its high refractive index, the light extraction efficiency of ß-Ga2O3 crystals is rather low, which would limit the performance of detection systems. In this paper, we use hollow nanosphere arrays with a high-index contrast to enhance the light extraction efficiency of ß-Ga2O3 crystals. We can increase the transmission diffraction efficiency and reduce the reflection diffraction efficiency through controlling the refractive index and the thickness of the shell of the hollow nanospheres, which can lead to a significant increase in the light extraction efficiency. The relationships between the light extraction efficiency and the refractive index and thickness of the shell of the hollow nanospheres are investigated by both numerical simulations and experiments. It is found that when the refractive index of the shell of the hollow nanospheres is higher than that of ß-Ga2O3, the light extraction efficiency is mainly determined by the diffraction efficiency of light transmitted from the surface with the hollow nanosphere arrays. When the refractive index of the shell is less than that of ß-Ga2O3, the light extraction efficiency is determined by the ratio of the diffraction efficiency of the light transmitted from the surface with the hollow nanosphere arrays to the diffraction efficiency of the light that can escape from the lateral surface.

8.
Opt Express ; 29(12): 18646-18653, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34154117

RESUMEN

ß-Ga2O3 is a promising candidate as a fast scintillation crystal for radiation detection in fast X-ray imaging and high-energy physics experiments. However, total internal reflection severely limits its light output. Conventional photonic crystals can improve the light output, but such improvement decreases dramatically with increased scintillator thickness due to the strong backward reflection by the photonic crystals. Here, graded-refractive-index photonic crystals composed of nanocone arrays are designed and fabricated on the surfaces of ß-Ga2O3 crystals with various thicknesses. Compared to the conventional photonic crystals, there is still an obvious light output improvement by using the graded-refractive-index photonic crystals when the thickness of the crystals is increased by three times. The effect of thickness on the improved light output is investigated with numerical simulations and experiments. Overall, the graded-refractive-index photonic crystals are beneficial to the improvement of light output from thick scintillators.

9.
Opt Express ; 29(16): 24792-24803, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614827

RESUMEN

Scintillators play an important role in the field of nuclear radiation detection. However, the light output of the scintillators is often limited by total internal reflection due to the high refractive indices of the scintillators. Furthermore, the light emission from scintillators typically has an approximately Lambertian profile, which is detrimental to the collection of the light. In this paper, we demonstrate a promising method to achieve enhancement of the light output from scintillators through use of mixed-scale microstructures that are composed of a photonic crystal slab and a microlens array. Simulations and experimental results both show significant improvements in the scintillator light output. The X-ray imaging characteristics of scintillators are improved by the application of the mixed-scale microstructures. The results presented here suggest that the application of the proposed mixed-scale microstructures to scintillators will be beneficial in the nuclear radiation detection field.

10.
Metab Brain Dis ; 36(8): 2299-2311, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34463942

RESUMEN

Ginkgo biloba extract 761 (EGb761), a standardized extract from the Ginkgo biloba leaf, is purported to inhibit NMDA receptor-mediated neuronal excitotoxicity and protect neurons form ischemic injury. However, the specific signal pathway involved in the effects of EGb761 on synaptic plasticity is still in dispute. In this article, effects of EGb761 and its monomer component ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and quercetin on rat hippocampal synaptic plasticity were studied. The evoked Excitatory postsynaptic currents (EPSCs) and miniature EPSCs were recorded on hippocampal slices from SD rats (14-21 days of age) by whole-cell patch-clamp recording and long-term potentiation (LTP) was induced by theta-burst stimulation. Acutely applied EGb761 inhibited the LTP, but bilaterally affect the evoked EPSCs. The evoked EPSCs were increased by incubation of lower concentration of EGb761, then the evoked EPSCs were decreased by incubation of higher concentration of EGb761. EGb761 monomer component GA, GB and GC could also inhibit the TBS-induced LTP and EPSC amplitude but not paired-pulse ratio (PPR). But quercetin, another monomer component of EGb761, led to increase in EPSC amplitude and decrease in PPR. Simultaneously, EGb761 and its monomer component ginkgolides inhibited the post-ischemic LTP (i-LTP) by inhibiting the EPSCs and the AMPA receptor subunit GluA1 expression on postsynaptic membrane. The results indicated that high concentration of EGb761 might inhibit LTP and i-LTP through inhibition effects of GA, GB and GC on AMPA receptors.


Asunto(s)
Ginkgo biloba , Potenciación a Largo Plazo , Animales , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley
11.
Anal Chem ; 92(9): 6269-6277, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32233396

RESUMEN

Aberrant protein phosphorylation and glycosylation are closely associated with a number of diseases. In particular, an interplay between phosphorylation and glycosylation regulates the hyperphosphorylation of protein tau, which is regarded as one of the pathologic features of Alzheimer's disease (AD). However, simultaneous characterization of these two types of post-translational modifications (PTMs) in the complex biological samples is challenging. TiO2 and the immobilized ion affinity chromatography (IMAC)-based enrichment method suffers from low selectivity and/or low recovery of phosphopeptides and glycopeptides because of the inherent limitations in intermolecular interactions. Here, we introduce a hydrogen bond-based poly[(N-isopropylacrylamide-co-4-(3-acryloylthioureido)benzoic acid0.2] (referred to as PNI-co-ATBA0.2) as a bifunctional enrichment platform to solve this bottleneck problem. Benefited from multiple hydrogen bonding interactions of ATBA with N-acetylneuraminic acid (Neu5Ac) located at the terminals of sialylated glycans and from favorable conformational transition of the copolymer chains, the smart copolymer has high adsorption capacity (370 mg·g-1) and high recovery (ranging from 74.1% ± 7.0% to 106% ± 5.0% (n = 3)) of sialylated glycopeptides. The smart copolymer also has high selectivity (79%) for simultaneous enrichment of glycopeptides and phosphopeptides from 50 µg HeLa cell lysates, yielding 721 unique phosphorylation sites from 631 phosphopeptides and 125 unique glycosylation sites from 120 glycopeptides. This study will open a new avenue and provide a novel insight for the design of enrichment materials used in PTM-proteomics.


Asunto(s)
Glicopéptidos/análisis , Fosfopéptidos/análisis , Polímeros/química , Proteómica/métodos , Cromatografía de Afinidad , Glicosilación , Células HeLa , Humanos , Enlace de Hidrógeno , Espectrometría de Masas , Ácido N-Acetilneuramínico/química , Fosforilación , Dióxido de Silicio/química , Titanio/química
12.
Opt Express ; 28(22): 33077-33083, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114977

RESUMEN

Photonic crystals coated on the surface of scintillators can be used to improve the light extraction efficiency by partially eliminating the total internal reflection. However, the traditional self-assembly technique is not applicable to the hygroscopic scintillators. In the present investigation, we have proposed an efficient method to prepare the photonic crystals on the surface of CsI(Na) hygroscopic scintillators by a combination of the self-assemble of polystyrene (PS) microspheres and the subsequent dry-transfer procedure. For obtaining optimal parameters of photonic crystals, the light output of the CsI(Na) sample is enhanced by 43.2% compared to the reference sample without photonic crystals under the excitation of alpha particles from 241Am source. The energy resolution is improved from 11.2% to 7.8%. This technique based on the dry-transfer procedure has a promising prospect in the preparation of photonic crystals for hygroscopic scintillators.

13.
Opt Express ; 28(8): 11301-11308, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403644

RESUMEN

The low light-extraction efficiency of scintillators is due to total internal reflection and has led to the extensive use of photonic crystals to improve the light output. However, in some applications, photonic crystals cannot be fabricated directly on scintillators. Here, we demonstrate a promising method to improve the light output of scintillators by using a buffer layer coated with photonic crystals and then fixed to the scintillator. Through both numerical simulations and experiments, we investigate how the refractive indexes of the buffer layer and photonic crystal affect the light output from scintillators. The experimental results indicate that the light output of (Lu,Y)2SiO5:Ce scintillators is enhanced 1.9 times by using a sapphire buffer layer coated with an array of polystyrene nanospheres. This method can be used to improve the detection efficiency of radiation-detection systems when photonic crystals cannot be fabricated directly on the scintillator.

14.
Langmuir ; 36(17): 4820-4826, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32275446

RESUMEN

The interactions between natural colloidal organic matter and actinides in solutions are complex and not fully understood. In this work, a crew-cut polystyrene-b-poly(acry1ic acid) (PS-b-PAA) micelle is proposed as a model particle for humic acid (HA) colloid with the aim to better understand the sequestration, aggregation, and mobility of HA colloids in the presence of uranyl ions. The effects of uranyl ions on the structure of PS29k-b-PAA5k micelles in aqueous solution were mainly investigated by synchrotron small-angle X-ray scattering. A core-shell model, accounting for the thickness and contrast changes of the PAA corona induced by the adsorption of uranyl, was employed to analyze the scattering data. A combination of transmission electron microscopy, dynamic light scattering, and zetametry showed a strong affinity of uranyl ions to PAA segments in water at pH 4-5 that resulted in the shrinkage and improved contrast of the PAA corona, as well as colloidal destabilization at a high uranyl concentration.

15.
Opt Express ; 26(9): 11438-11446, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29716062

RESUMEN

Plastic scintillators are widely used in various radiation measurement systems. However, detection efficiency and signal-to-noise are limited due to the total internal reflection, especially for weak signal detection situations. In the present investigation, large-area photonic crystals consisting of an array of periodic truncated cone holes were prepared based on hot embossing technology aiming at coupling with the surface of plastic scintillator to improve the light extraction efficiency and directionality control. The experimental results show that a maximum enhancement of 64% at 25° emergence angle along Γ-M orientation and a maximum enhancement of 58% at 20° emergence angle along Γ-K orientation were obtained. The proposed fabrication method of photonic crystal scintillator can avoid complicated pattern transfer processes used in most traditional methods, leading to a simple, economical method for large-area preparation. The photonic crystal scintillator demonstrated in this work is of great value for practical applications of nuclear radiation detection.

16.
Opt Lett ; 43(22): 5647-5650, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30439916

RESUMEN

We investigate the effects of photonic crystal structures on radiation imaging properties of a ZnO:Ga image converter. The results show that photonic crystal structures can regulate luminescence distribution and spatial resolving power, which is caused by the light extraction and the defect scattering of photonic crystal structures. The present investigation confirms that photonic crystals can improve the imaging properties of existing image converters and proposes a new coupling mode between the photonic crystal image converter and back-end optical devices, which is beneficial to the application of photonic crystals in the field of radiation imaging.

17.
Langmuir ; 34(24): 7006-7010, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29360372

RESUMEN

Polymer adsorption and desorption are fundamental in many industrial and biomedical applications. Here, we introduce a new method to monitor the polymer desorption kinetics in situ based on the behavior of aggregation-induced emission. Poly(ethylene oxide) and colloidal silica (SiO2) were used as a model system. It was found that the aggregation-induced emission method could be successfully used to determine the polymer desorption kinetics, and the polymer desorption followed the first-order kinetics. It was also found that the polymer desorption rate constant decreased with the increasing molecular weight, which could be described by a power law function kd ≈ M-0.28, close to that of the adsorption rate constant.

18.
Water Sci Technol ; 2017(3): 695-706, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30016287

RESUMEN

In this study, a laboratory-scale system combined a vertical flow constructed wetland (VF) with a horizontal flow constructed wetland (HF), which was used to treat the secondary effluent of a wastewater treatment plant. Removal efficiencies of 67.02%, 89.80%, 90.31% and 75.38% were achieved by the system for chemical oxygen demand (COD), ammonium nitrogen (NH4 +-N), total nitrogen (TN) and total phosphorus (TP), respectively. The VF showed much higher average loading rates of COD, TP, NH4 +-N and TN (7.96 g/m2/d, 0.076 g/m2/d, 0.31 g/m2/d and 0.99 g/m2/d) than in HF (0.65 g/m2/d, 0.016 g/m2/d, 0.25 g/m2/d and 0.50 g/m2/d), during the stable operation period. Biodegradation played a major role in pollutant removal, especially for COD and TN. The results of bacterial community analysis indicated that heterotrophic denitrifying bacteria (Hydrogenophaga and Flavobacterium) were the dominant contributors for nitrogen removal in the VF, while heterotrophic denitrifying bacteria (Rhodobacter, Flavobacterium and Dechloromonas) and the autotrophic denitrifying bacteria Sulfurimonas played the principal roles for nitrogen removal in the HF. Redundancy analyses showed that COD and NH4 +-N were the important factors affecting the distribution of nitrogen removal bacteria in the VF, while pH, dissolved oxygen and oxidation-reduction potential were the key factors influencing the distribution of nitrogen removal bacteria in the HF.


Asunto(s)
Bacterias/genética , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Humedales , Bacterias/clasificación , Bacterias/metabolismo , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Desnitrificación , Nitrógeno/análisis , Fósforo/análisis
19.
Opt Lett ; 42(5): 987-990, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28248349

RESUMEN

It is intuitively expected that an enhanced light extraction of a scintillator can be easily achieved by photonic crystal structures. Here, we demonstrate a modified timing characteristic for a detection system induced by enhanced light extraction with photonic crystal structures. Such improvement is due to the enhanced light extraction which can be clearly proven by the independent measurements of the light output and the timing resolution. The present investigation is advantageous to promote the development of a scintillation detection system performance based on the time-of-flight measurement.

20.
Langmuir ; 33(1): 191-196, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27990825

RESUMEN

Tuning ice formation is of great importance in biological systems and some technological applications. Many synthetic polymers have been shown to affect ice formation, in particular, polyvinyl alcohol (PVA). However, the experimental observations of the effect of PVA on ice formation are still conflicting. Here, we introduced colloidal silica (CS) as the model liquid/solid interface and studied the effect of PVA on ice formation in detail. The results showed that either PVA or CS promoted ice formation, whereas the mixture of these two (CS-PVA) prevented ice formation (antifreezing). Using quantitative analysis based on classical nucleation theory, we revealed that the main contribution came from the kinetic factor J0 rather than the energy barrier factor Γ. Combined with the PVA adsorption behavior on CS particles, it is strongly suggested that the adsorption of PVA at the interface has significantly reduced ice nucleation, which thus may provide new ideas for developing antifreezing agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA