Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35632356

RESUMEN

The tele-presence robot is designed to set forth an economic solution to facilitate day-to-day normal activities in almost every field. There are several solutions to design tele-presence robots, e.g., Skype and team viewer, but it is pretty inappropriate to use Skype and extra hardware. Therefore, in this article, we have presented a robust implementation of the tele-presence robot. Our proposed omnidirectional tele-presence robot consists of (i) Tricon ultrasonic sensors, (ii) Kalman filter implementation and control, and (iii) integration of our developed WebRTC-based application with the omnidirectional tele-presence robot for video transmission. We present a new algorithm to encounter the sensor noise with the least number of sensors for the estimation of Kalman filter. We have simulated the complete model of robot in Simulink and Matlab for the tough paths and critical hurdles. The robot successfully prevents the collision and reaches the destination. The mean errors for the estimation of position and velocity are 5.77% and 2.04%. To achieve efficient and reliable video transmission, the quality factors such as resolution, encoding, average delay and throughput are resolved using the WebRTC along with the integration of the communication protocols. To protect the data transmission, we have implemented the SSL protocol and installed it on the server. We tested three different cases of video resolutions (i.e., 320×280, 820×460 and 900×590) for the performance evaluation of the video transmission. For the highest resolution, our TPR takes 3.5 ms for the encoding, and the average delay is 2.70 ms with 900 × 590 pixels.


Asunto(s)
Robótica , Algoritmos , Robótica/métodos , Ultrasonido
2.
Sensors (Basel) ; 22(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366269

RESUMEN

Rice is one of the vital foods consumed in most countries throughout the world. To estimate the yield, crop counting is used to indicate improper growth, identification of loam land, and control of weeds. It is becoming necessary to grow crops healthy, precisely, and proficiently as the demand increases for food supplies. Traditional counting methods have numerous disadvantages, such as long delay times and high sensitivity, and they are easily disturbed by noise. In this research, the detection and counting of rice plants using an unmanned aerial vehicle (UAV) and aerial images with a geographic information system (GIS) are used. The technique is implemented in the area of forty acres of rice crop in Tando Adam, Sindh, Pakistan. To validate the performance of the proposed system, the obtained results are compared with the standard plant count techniques as well as approved by the agronomist after testing soil and monitoring the rice crop count in each acre of land of rice crops. From the results, it is found that the proposed system is precise and detects rice crops accurately, differentiates from other objects, and estimates the soil health based on plant counting data; however, in the case of clusters, the counting is performed in semi-automated mode.


Asunto(s)
Oryza , Suelo , Sistemas de Información Geográfica , Productos Agrícolas , Malezas
3.
Sensors (Basel) ; 22(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35009747

RESUMEN

Diabetic retinopathy (DR) is a human eye disease that affects people who are suffering from diabetes. It causes damage to their eyes, including vision loss. It is treatable; however, it takes a long time to diagnose and may require many eye exams. Early detection of DR may prevent or delay the vision loss. Therefore, a robust, automatic and computer-based diagnosis of DR is essential. Currently, deep neural networks are being utilized in numerous medical areas to diagnose various diseases. Consequently, deep transfer learning is utilized in this article. We employ five convolutional-neural-network-based designs (AlexNet, GoogleNet, Inception V4, Inception ResNet V2 and ResNeXt-50). A collection of DR pictures is created. Subsequently, the created collections are labeled with an appropriate treatment approach. This automates the diagnosis and assists patients through subsequent therapies. Furthermore, in order to identify the severity of DR retina pictures, we use our own dataset to train deep convolutional neural networks (CNNs). Experimental results reveal that the pre-trained model Se-ResNeXt-50 obtains the best classification accuracy of 97.53% for our dataset out of all pre-trained models. Moreover, we perform five different experiments on each CNN architecture. As a result, a minimum accuracy of 84.01% is achieved for a five-degree classification.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Redes Neurales de la Computación , Retina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA