Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142246

RESUMEN

Transdifferentiation of Schwann cells is essential for functional peripheral nerve regeneration after injury. By activating a repair program, Schwann cells promote functional axonal regeneration and remyelination. However, chronic denervation, aging, metabolic diseases, or chronic inflammatory processes reduce the transdifferentiation capacity and thus diminish peripheral nerve repair. It was recently described that the sphingosine-1-phosphate receptor (S1PR) agonist Fingolimod enhances the Schwann cell repair phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth. Since Fingolimod targets four out of five S1PRs (S1P1, S1P3-5) possibly leading to non-specific adverse effects, identification of the main receptor(s) responsible for the observed phenotypic changes is mandatory for future specific treatment approaches. Our experiments revealed that S1P3 dominates and that along with S1P1 acts as the responsible receptor for Schwann cell transdifferentiation as revealed by the combinatory application of specific agonists and antagonists. Targeting both receptors reduced the expression of myelin-associated genes, increased PDGF-BB representing enhanced trophic factor expression likely to result from c-Jun induction. Furthermore, we demonstrated that S1P4 and S1P5 play only a minor role in the adaptation of the repair phenotype. In conclusion, modulation of S1P1 and S1P3 could be effective to enhance the Schwann cell repair phenotype and thus stimulate proper nerve repair.


Asunto(s)
Clorhidrato de Fingolimod , Células de Schwann , Becaplermina/metabolismo , Clorhidrato de Fingolimod/metabolismo , Clorhidrato de Fingolimod/farmacología , Regeneración Nerviosa/fisiología , Fenotipo , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Células de Schwann/metabolismo , Receptores de Esfingosina-1-Fosfato
2.
FASEB J ; 33(4): 4703-4715, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30592632

RESUMEN

Schwann cells promote nerve regeneration by adaptation of a regenerative phenotype referred to as repair mediating Schwann cell. Down-regulation of myelin proteins, myelin clearance, formation of Bungner's bands, and secretion of trophic factors characterize this cell type. We have previously shown that the sphingosine-1-phosphate receptor agonist Fingolimod/FTY720P promotes the generation of this particular Schwann cell phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth of dorsal root ganglion neurons. Despite its biomedical relevance, a detailed characterization of the corresponding Schwann cell secretome is lacking, and the impact of FTY720P on enhancing neurite growth is not defined. Here, we applied a label-free quantitative mass spectrometry approach to characterize the secretomes derived from primary neonatal and adult rat Schwann cells in response to FTY720P. We identified a large proportion of secreted proteins with a high overlap between the neonatal and adult Schwann cells, which can be associated with biologic processes such as development, axon growth, and regeneration. Moreover, FTY720P-treated Schwann cells release proteins downstream of Smad signaling known to support neurite growth. Our results therefore uncover a network of trophic factors involved in glial-mediated repair of the peripheral nervous system.-Schira, J., Heinen, A., Poschmann, G., Ziegler, B., Hartung, H.-P., Stühler, K., Küry, P. Secretome analysis of nerve repair mediating Schwann cells reveals Smad-dependent trophism.


Asunto(s)
Regeneración Nerviosa/fisiología , Células de Schwann/metabolismo , Proteínas Smad/metabolismo , Animales , Células Cultivadas , Cromatografía Liquida , Biología Computacional , Clorhidrato de Fingolimod/farmacología , Organofosfatos/farmacología , Ratas , Células de Schwann/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas Smad/genética , Esfingosina/análogos & derivados , Esfingosina/farmacología , Espectrometría de Masas en Tándem , Ácido Tricloroacético/química
3.
PLoS One ; 10(7): e0134371, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26222542

RESUMEN

Lesion-induced scarring is a major impediment for regeneration of injured axons in the central nervous system (CNS). The collagen-rich glial-fibrous scar contains numerous axon growth inhibitory factors forming a regeneration-barrier for axons. We demonstrated previously that the combination of the iron chelator 2,2'-bipyridine-5,5'-decarboxylic acid (BPY-DCA) and 8-Br-cyclic AMP (cAMP) inhibits scar formation and collagen deposition, leading to enhanced axon regeneration and partial functional recovery after spinal cord injury. While BPY-DCA is not a clinical drug, the clinically approved iron chelator deferoxamine mesylate (DFO) may be a suitable alternative for anti-scarring treatment (AST). In order to prove the scar-suppressing efficacy of DFO we modified a recently published in vitro model for CNS scarring. The model comprises a co-culture system of cerebral astrocytes and meningeal fibroblasts, which form scar-like clusters when stimulated with transforming growth factor-ß (TGF-ß). We studied the mechanisms of TGF-ß-induced CNS scarring and compared the efficiency of different putative pharmacological scar-reducing treatments, including BPY-DCA, DFO and cAMP as well as combinations thereof. We observed modulation of TGF-ß-induced scarring at the level of fibroblast proliferation and contraction as well as specific changes in the expression of extracellular matrix molecules and axon growth inhibitory proteins. The individual and combinatorial pharmacological treatments had distinct effects on the cellular and molecular aspects of in vitro scarring. DFO could be identified as a putative anti-scarring treatment for CNS trauma. We subsequently validated this by local application of DFO to a dorsal hemisection in the rat thoracic spinal cord. DFO treatment led to significant reduction of scarring, slightly increased regeneration of corticospinal tract as well as ascending CGRP-positive axons and moderately improved locomotion. We conclude that the in vitro model for CNS scarring is suitable for efficient pre-screening and identification of putative scar-suppressing agents prior to in vivo application and validation, thus saving costs, time and laboratory animals.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Cicatriz/prevención & control , Deferoxamina/farmacología , Regeneración Nerviosa/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Sistema Nervioso Central/metabolismo , Cicatriz/metabolismo , Cicatriz/patología , Colágeno Tipo IV/genética , AMP Cíclico/farmacología , Modelos Animales de Enfermedad , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Técnicas In Vitro , Quelantes del Hierro/farmacología , Regeneración Nerviosa/fisiología , Neuritas/efectos de los fármacos , Neuritas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Factor de Crecimiento Transformador beta/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA