Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Rev Mol Cell Biol ; 25(7): 534-554, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38509203

RESUMEN

Many steps of RNA processing occur during transcription by RNA polymerases. Co-transcriptional activities are deemed commonplace in prokaryotes, in which the lack of membrane barriers allows mixing of all gene expression steps, from transcription to translation. In the past decade, an extraordinary level of coordination between transcription and RNA processing has emerged in eukaryotes. In this Review, we discuss recent developments in our understanding of co-transcriptional gene regulation in both eukaryotes and prokaryotes, comparing methodologies and mechanisms, and highlight striking parallels in how RNA polymerases interact with the machineries that act on nascent RNA. The development of RNA sequencing and imaging techniques that detect transient transcription and RNA processing intermediates has facilitated discoveries of transcription coordination with splicing, 3'-end cleavage and dynamic RNA folding and revealed physical contacts between processing machineries and RNA polymerases. Such studies indicate that intron retention in a given nascent transcript can prevent 3'-end cleavage and cause transcriptional readthrough, which is a hallmark of eukaryotic cellular stress responses. We also discuss how coordination between nascent RNA biogenesis and transcription drives fundamental aspects of gene expression in both prokaryotes and eukaryotes.


Asunto(s)
Células Procariotas , Transcripción Genética , Transcripción Genética/genética , Células Procariotas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Células Eucariotas/metabolismo , Humanos , Regulación de la Expresión Génica/genética , Animales , Eucariontes/genética , Empalme del ARN/genética , Procesamiento Postranscripcional del ARN/genética , ARN/metabolismo , ARN/genética
2.
Nucleic Acids Res ; 48(4): 2091-2106, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31875226

RESUMEN

Staufen1 (STAU1) is a dsRNA binding protein mediating mRNA transport and localization, translational control and STAU1-mediated mRNA decay (SMD). The STAU1 binding site (SBS) within human ADP-ribosylation factor1 (ARF1) 3'UTR binds STAU1 and this downregulates ARF1 cytoplasmic mRNA levels by SMD. However, how STAU1 recognizes specific mRNA targets is still under debate. Our structure of the ARF1 SBS-STAU1 complex uncovers target recognition by STAU1. STAU1 dsRNA binding domain (dsRBD) 4 interacts with two pyrimidines and one purine from the minor groove side via helix α1, the ß1-ß2 loop anchors the dsRBD at the end of the dsRNA and lysines in helix α2 bind to the phosphodiester backbone from the major groove side. STAU1 dsRBD3 displays the same binding mode with specific recognition of one guanine base. Mutants disrupting minor groove recognition of ARF1 SBS affect in vitro binding and reduce SMD in vivo. Our data thus reveal how STAU1 recognizes minor groove features in dsRNA relevant for target selection.


Asunto(s)
Factor 1 de Ribosilacion-ADP/química , Proteínas del Citoesqueleto/química , Motivo de Unión al ARN Bicatenario/genética , ARN Bicatenario/química , Proteínas de Unión al ARN/química , Factor 1 de Ribosilacion-ADP/genética , Sitios de Unión/genética , Citoplasma/química , Citoplasma/genética , Proteínas del Citoesqueleto/genética , Humanos , Conformación Proteica , Estabilidad del ARN/genética , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética
3.
EMBO J ; 35(20): 2179-2191, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27647875

RESUMEN

Uridylation of various cellular RNA species at the 3' end has been generally linked to RNA degradation. In mammals, uridylated pre-let-7 miRNAs and mRNAs are targeted by the 3' to 5' exoribonuclease DIS3L2. Mutations in DIS3L2 have been associated with Perlman syndrome and with Wilms tumor susceptibility. Using in vivo cross-linking and immunoprecipitation (CLIP) method, we discovered the DIS3L2-dependent cytoplasmic uridylome of human cells. We found a broad spectrum of uridylated RNAs including rRNAs, snRNAs, snoRNAs, tRNAs, vault, 7SL, Y RNAs, mRNAs, lncRNAs, and transcripts from pseudogenes. The unifying features of most of these identified RNAs are aberrant processing and the presence of stable secondary structures. Most importantly, we demonstrate that uridylation mediates DIS3L2 degradation of short RNA polymerase II-derived RNAs. Our findings establish the role of DIS3L2 and oligouridylation as the cytoplasmic quality control for highly structured ncRNAs.


Asunto(s)
Exorribonucleasas/metabolismo , ARN no Traducido/metabolismo , Línea Celular , Exorribonucleasas/genética , Humanos , Inmunoprecipitación , Nucleotidiltransferasas/metabolismo
4.
Front Genet ; 12: 818697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154260

RESUMEN

Alternative polyadenylation (APA) is widespread among metazoans and has been shown to have important impacts on mRNA stability and protein expression. Beyond a handful of well-studied organisms, however, its existence and consequences have not been well investigated. We therefore turned to the deep-branching red alga, Cyanidioschyzon merolae, to study the biology of polyadenylation in an organism highly diverged from humans and yeast. C. merolae is an acidothermophilic alga that lives in volcanic hot springs. It has a highly reduced genome (16.5 Mbp) and has lost all but 27 of its introns and much of its splicing machinery, suggesting that it has been under substantial pressure to simplify its RNA processing pathways. We used long-read sequencing to assess the key features of C. merolae mRNAs, including splicing status and polyadenylation cleavage site (PAS) usage. Splicing appears to be less efficient in C. merolae compared with yeast, flies, and mammalian cells. A high proportion of transcripts (63%) have at least two distinct PAS's, and 34% appear to utilize three or more sites. The apparent polyadenylation signal UAAA is used in more than 90% of cases, in cells grown in both rich media or limiting nitrogen. Our documentation of APA for the first time in this non-model organism highlights its conservation and likely biological importance of this regulatory step in gene expression.

5.
Methods Mol Biol ; 2062: 237-253, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31768980

RESUMEN

The RNA exosome processes a wide variety of RNA and mediates RNA maturation, quality control and decay. In marked contrast to its high processivity in vivo, the purified exosome exhibits only weak activity on RNA substrates in vitro. Its activity is regulated by several auxiliary proteins, and protein complexes. In budding yeast, the activity of exosome is enhanced by the polyadenylation complex referred to as TRAMP. TRAMP oligoadenylates precursors and aberrant forms of RNAs to promote their trimming or complete degradation by exosomes. This chapter provides protocols for the purification of TRAMP and exosome complexes from yeast and the in vitro evaluation of exosome activation by the TRAMP complex. The protocols can be used for different purposes, such as the assessment of the role of individual subunits, protein domains or particular mutations in TRAMP-exosome RNA processing in vitro.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/metabolismo , Poliadenilación/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas/metabolismo , Núcleo Celular/metabolismo , ARN/metabolismo , Estabilidad del ARN/fisiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-30397107

RESUMEN

Most eukaryotic RNAs are posttranscriptionally modified. The majority of modifications promote RNA maturation, others may regulate function and stability. The 3' terminal non-templated oligouridylation is a widespread modification affecting many cellular RNAs at some stage of their life cycle. It has diverse roles in RNA metabolism. The most prevalent is the regulation of stability and quality control. On the cellular and organismal level, it plays a critical role in a number of pathways, such as cell cycle regulation, cell death, development or viral infection. Defects in uridylation have been linked to several diseases. This review summarizes the current knowledge about the role of the 3' terminal oligo(U)-tailing in biology of various RNAs in eukaryotes and describes key factors involved in these pathways.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.


Asunto(s)
Células Eucariotas/fisiología , Procesamiento de Término de ARN 3' , ARN/metabolismo , Uridina/metabolismo , Eucariontes , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA