Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(9): e1010200, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074769

RESUMEN

SARS-CoV-2 whole genome sequencing has played an important role in documenting the emergence of polymorphisms in the viral genome and its continuing evolution during the COVID-19 pandemic. Here we present data from over 360 patients to characterize the complex sequence diversity of individual infections identified during multiple variant surges (e.g., Alpha and Delta). Across our survey, we observed significantly increasing SARS-CoV-2 sequence diversity during the pandemic and frequent occurrence of multiple biallelic sequence polymorphisms in all infections. This sequence polymorphism shows that SARS-CoV-2 infections are heterogeneous mixtures. Convention for reporting microbial pathogens guides investigators to report a majority consensus sequence. In our study, we found that this approach would under-report sequence variation in all samples tested. As we find that this sequence heterogeneity is efficiently transmitted from donors to recipients, our findings illustrate that infection complexity must be monitored and reported more completely to understand SARS-CoV-2 infection and transmission dynamics. Many of the nucleotide changes that would not be reported in a majority consensus sequence have now been observed as lineage defining SNPs in Omicron BA.1 and/or BA.2 variants. This suggests that minority alleles in earlier SARS-CoV-2 infections may play an important role in the continuing evolution of new variants of concern.


Asunto(s)
COVID-19 , COVID-19/genética , Genoma Viral/genética , Humanos , Pandemias , SARS-CoV-2/genética
2.
Transfusion ; 63(7): 1354-1365, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37255467

RESUMEN

BACKGROUND: The true burden of COVID-19 in low- and middle-income countries remains poorly characterized, especially in Africa. Even prior to the availability of SARS-CoV-2 vaccines, countries in Africa had lower numbers of reported COVID-19 related hospitalizations and deaths than other regions globally. METHODS: Ugandan blood donors were evaluated between October 2019 and April 2022 for IgG antibodies to SARS-CoV-2 nucleocapsid (N), spike (S), and five variants of the S protein using multiplexed electrochemiluminescence immunoassays (MesoScale Diagnostics, Rockville, MD). Seropositivity for N and S was assigned using manufacturer-provided cutoffs and trends in seroprevalence were estimated by quarter. Statistically significant associations between N and S antibody seropositivity and donor characteristics in November-December 2021 were assessed by chi-square tests. RESULTS: A total of 5393 blood unit samples from donors were evaluated. N and S seropositivity increased throughout the pandemic to 82.6% in January-April 2022. Among seropositive individuals, N and S antibody levels increased ≥9-fold over the study period. In November-December 2021, seropositivity to N and S antibody was higher among repeat donors (61.3%) compared with new donors (55.1%; p = .043) and among donors from Kampala (capital city of Uganda) compared with rural regions (p = .007). Seropositivity to S antibody was significantly lower among HIV-seropositive individuals (58.8% vs. 84.9%; p = .009). CONCLUSIONS: Despite previously reported low numbers of COVID-19 cases and related deaths in Uganda, high SARS-CoV-2 seroprevalence and increasing antibody levels among blood donors indicated that the country experienced high levels of infection over the course of the pandemic.


Asunto(s)
Donantes de Sangre , COVID-19 , Humanos , Uganda/epidemiología , SARS-CoV-2 , Vacunas contra la COVID-19 , Estudios Seroepidemiológicos , COVID-19/epidemiología , Anticuerpos Antivirales
3.
Malar J ; 22(1): 369, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049801

RESUMEN

BACKGROUND: Plasmodium vivax has been more resistant to various control measures than Plasmodium falciparum malaria because of its greater transmissibility and ability to produce latent parasite forms. Therefore, developing P. vivax vaccines and therapeutic monoclonal antibodies (humAbs) remains a high priority. The Duffy antigen receptor for chemokines (DARC) expressed on erythrocytes is central to P. vivax invasion of reticulocytes. P. vivax expresses a Duffy binding protein (PvDBP) on merozoites, a DARC ligand, and the DARC: PvDBP interaction is critical for P. vivax blood stage malaria. Therefore, PvDBP is a leading vaccine candidate for P. vivax and a target for therapeutic human monoclonal antibodies (humAbs). METHODS: Here, the functional activity of humAbs derived from naturally exposed and vaccinated individuals are compared for the first time using easily cultured Plasmodium knowlesi (P. knowlesi) that had been genetically modified to replace its endogenous PkDBP orthologue with PvDBP to create a transgenic parasite, PkPvDBPOR. This transgenic parasite requires DARC to invade human erythrocytes but is not reticulocyte restricted. This model was used to evaluate the invasion inhibition potential of 12 humAbs (9 naturally acquired; 3 vaccine-induced) targeting PvDBP individually and in combinations using growth inhibition assays (GIAs). RESULTS: The PvDBP-specific humAbs demonstrated 70-100% inhibition of PkPvDBPOR invasion with the IC50 values ranging from 51 to 338 µg/mL for the 9 naturally acquired (NA) humAbs and 33 to 99 µg/ml for the 3 vaccine-induced (VI) humAbs. To evaluate antagonistic, additive, or synergistic effects, six pairwise combinations were performed using select humAbs. Of these combinations tested, one NA/NA (099100/094083) combination demonstrated relatively strong additive inhibition between 10 and 100 µg/mL; all combinations of NA and VI humAbs showed additive inhibition at concentrations below 25 µg/mL and antagonism at higher concentrations. None of the humAb combinations showed synergy. Invasion inhibition efficacy by some mAbs shown with PkPvDBPOR was closely replicated using P. vivax clinical isolates. CONCLUSION: The PkPvDBPOR transgenic model is a robust surrogate of P. vivax to assess invasion and growth inhibition of human monoclonal Abs recognizing PvDBP individually and in combination. There was no synergistic interaction for growth inhibition with the humAbs tested here that target different epitopes or subdomains of PvDBP, suggesting little benefit in clinical trials using combinations of these humAbs.


Asunto(s)
Vacunas contra la Malaria , Malaria Vivax , Plasmodium knowlesi , Animales , Humanos , Plasmodium vivax , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Proteínas Protozoarias/metabolismo , Malaria Vivax/parasitología , Eritrocitos/parasitología , Animales Modificados Genéticamente , Sistema del Grupo Sanguíneo Duffy/metabolismo
4.
Clin Infect Dis ; 74(2): 339-342, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33893474

RESUMEN

We report 2 episodes of potential SARS-CoV-2 transmission from infected van drivers to passengers despite masking and physical distancing. Whole-genome sequencing confirmed relatedness of driver and passenger SARS-CoV-2. With the heater operating, fluorescent microspheres were transported by airflow >3 meters from the front to the back of the van.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Distanciamiento Físico , Secuenciación Completa del Genoma
5.
Mol Biol Evol ; 36(9): 1931-1941, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31077328

RESUMEN

The human disease lymphatic filariasis causes the debilitating effects of elephantiasis and hydrocele. Lymphatic filariasis currently affects the lives of 90 million people in 52 countries. There are three nematodes that cause lymphatic filariasis, Brugia malayi, Brugia timori, and Wuchereria bancrofti, but 90% of all cases of lymphatic filariasis are caused solely by W. bancrofti (Wb). Here we use population genomics to reconstruct the probable route and timing of migration of Wb strains that currently infect Africa, Haiti, and Papua New Guinea (PNG). We used selective whole genome amplification to sequence 42 whole genomes of single Wb worms from populations in Haiti, Mali, Kenya, and PNG. Our results are consistent with a hypothesis of an Island Southeast Asia or East Asian origin of Wb. Our demographic models support divergence times that correlate with the migration of human populations. We hypothesize that PNG was infected at two separate times, first by the Melanesians and later by the migrating Austronesians. The migrating Austronesians also likely introduced Wb to Madagascar where later migrations spread it to continental Africa. From Africa, Wb spread to the New World during the transatlantic slave trade. Genome scans identified 17 genes that were highly differentiated among Wb populations. Among these are genes associated with human immune suppression, insecticide sensitivity, and proposed drug targets. Identifying the distribution of genetic diversity in Wb populations and selection forces acting on the genome will build a foundation to test future hypotheses and help predict response to current eradication efforts.


Asunto(s)
Migración Humana , Nematodos/parasitología , Wuchereria bancrofti/genética , Adaptación Biológica , Animales , Filariasis Linfática/parasitología , Variación Genética , Humanos , Filogeografía , Secuenciación Completa del Genoma
6.
BMC Med ; 16(1): 71, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29788968

RESUMEN

BACKGROUND: Reliable measures of disease burden over time are necessary to evaluate the impact of interventions and assess sub-national trends in the distribution of infection. Three Malaria Indicator Surveys (MISs) have been conducted in Madagascar since 2011. They provide a valuable resource to assess changes in burden that is complementary to the country's routine case reporting system. METHODS: A Bayesian geostatistical spatio-temporal model was developed in an integrated nested Laplace approximation framework to map the prevalence of Plasmodium falciparum malaria infection among children from 6 to 59 months in age across Madagascar for 2011, 2013 and 2016 based on the MIS datasets. The model was informed by a suite of environmental and socio-demographic covariates known to influence infection prevalence. Spatio-temporal trends were quantified across the country. RESULTS: Despite a relatively small decrease between 2013 and 2016, the prevalence of malaria infection has increased substantially in all areas of Madagascar since 2011. In 2011, almost half (42.3%) of the country's population lived in areas of very low malaria risk (<1% parasite prevalence), but by 2016, this had dropped to only 26.7% of the population. Meanwhile, the population in high transmission areas (prevalence >20%) increased from only 2.2% in 2011 to 9.2% in 2016. A comparison of the model-based estimates with the raw MIS results indicates there was an underestimation of the situation in 2016, since the raw figures likely associated with survey timings were delayed until after the peak transmission season. CONCLUSIONS: Malaria remains an important health problem in Madagascar. The monthly and annual prevalence maps developed here provide a way to evaluate the magnitude of change over time, taking into account variability in survey input data. These methods can contribute to monitoring sub-national trends of malaria prevalence in Madagascar as the country aims for geographically progressive elimination.


Asunto(s)
Malaria/epidemiología , Plasmodium falciparum/patogenicidad , Preescolar , Femenino , Historia del Siglo XXI , Humanos , Lactante , Madagascar , Malaria Falciparum/epidemiología , Masculino , Prevalencia , Encuestas y Cuestionarios
7.
Malar J ; 17(1): 294, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-30103751

RESUMEN

BACKGROUND: Primaquine (PQ), an 8-aminoquinoline, is the only drug approved by the United States Food and Drug Administration for radical cure and prevention of relapse in Plasmodium vivax infections. Knowledge of the metabolism of PQ is critical for understanding the therapeutic efficacy and hemolytic toxicity of this drug. Recent in vitro studies with primary human hepatocytes have been useful for developing the ultra high-performance liquid chromatography coupled with high-resolution mass spectrometric (UHPLC-QToF-MS) methods for simultaneous determination of PQ and its metabolites generated through phase I and phase II pathways for drug metabolism. METHODS: These methods were further optimized and applied for phenotyping PQ metabolites from plasma and urine from healthy human volunteers treated with single 45 mg dose of PQ. Identity of the metabolites was predicted by MetaboLynx using LC-MS/MS fragmentation patterns. Selected metabolites were confirmed with appropriate standards. RESULTS: Besides PQ and carboxy PQ (cPQ), the major plasma metabolite, thirty-four additional metabolites were identified in human plasma and urine. Based on these metabolites, PQ is viewed as metabolized in humans via three pathways. Pathway 1 involves direct glucuronide/glucose/carbamate/acetate conjugation of PQ. Pathway 2 involves hydroxylation (likely cytochrome P450-mediated) at different positions on the quinoline ring, with mono-, di-, or even tri-hydroxylations possible, and subsequent glucuronide conjugation of the hydroxylated metabolites. Pathway 3 involves the monoamine oxidase catalyzed oxidative deamination of PQ resulting in formation of PQ-aldehyde, PQ alcohol and cPQ, which are further metabolized through additional phase I hydroxylations and/or phase II glucuronide conjugations. CONCLUSION: This approach and these findings augment our understanding and provide comprehensive view of pathways for PQ metabolism in humans. These will advance the clinical studies of PQ metabolism in different populations for different therapeutic regimens and an understanding of the role these play in PQ efficacy and safety outcomes, and their possible relation to metabolizing enzyme polymorphisms.


Asunto(s)
Antimaláricos/metabolismo , Primaquina/metabolismo , Adulto , Antimaláricos/sangre , Antimaláricos/orina , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Primaquina/sangre , Primaquina/orina
8.
Genome Res ; 24(6): 1028-38, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24812326

RESUMEN

Most malaria infections contain complex mixtures of distinct parasite lineages. These multiple-genotype infections (MGIs) impact virulence evolution, drug resistance, intra-host dynamics, and recombination, but are poorly understood. To address this we have developed a single-cell genomics approach to dissect MGIs. By combining cell sorting and whole-genome amplification (WGA), we are able to generate high-quality material from parasite-infected red blood cells (RBCs) for genotyping and next-generation sequencing. We optimized our approach through analysis of >260 single-cell assays. To quantify accuracy, we decomposed mixtures of known parasite genotypes and obtained highly accurate (>99%) single-cell genotypes. We applied this validated approach directly to infections of two major malaria species, Plasmodium falciparum, for which long term culture is possible, and Plasmodium vivax, for which no long-term culture is feasible. We demonstrate that our single-cell genomics approach can be used to generate parasite genome sequences directly from patient blood in order to unravel the complexity of P. vivax and P. falciparum infections. These methods open the door for large-scale analysis of within-host variation of malaria infections, and reveal information on relatedness and drug resistance haplotypes that is inaccessible through conventional sequencing of infections.


Asunto(s)
Genoma de Protozoos , Malaria/microbiología , Reacción en Cadena de la Polimerasa/métodos , Análisis de la Célula Individual/métodos , Eritrocitos/microbiología , Técnicas de Genotipaje , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Polimorfismo de Nucleótido Simple
9.
Malar J ; 16(1): 139, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28376871

RESUMEN

BACKGROUND: The prevalence and variants of G6PD deficiency in the Plasmodium vivax-endemic zones of Madagascar remain unknown. The admixed African-Austronesian origins of the Malagasy population make it probable that a heterogeneous mix of genetic variants with a spectrum of clinical severity will be circulating. This would have implications for the widespread use of P. vivax radical cure therapy. Two study populations in the P. vivax-endemic western foothills region of Madagascar were selected for G6PD screening. Both the qualitative fluorescent spot test and G6PD genotyping were used to screen all participants. RESULTS: A total of 365 unrelated male volunteers from the Tsiroanomandidy, Mandoto, and Miandrivazo districts of Madagascar were screened and 12.9% were found to be phenotypically G6PD deficient. Full gene sequencing of 95 samples identified 16 single nucleotide polymorphisms, which were integrated into a genotyping assay. Genotyping (n = 291) found one individual diagnosed with the severe G6PD Mediterranean C563T mutation, while the remaining G6PD deficient samples had mutations of African origin, G6PD A- and G6PD A. CONCLUSIONS: Deployment of P. vivax radical cure in Madagascar must be considerate of the risks presented by the observed prevalence of G6PDd prevalence. The potential morbidity associated with cumulative episodes of P. vivax clinical relapses requires a strategy for increasing access to safe radical cure. The observed dominance of African G6PDd haplotypes is surprising given the known mixed African-Austronesian origins of the Malagasy population; more widespread surveying of G6PDd epidemiology across the island would be required to characterize the distribution of G6PD haplotypes across Madagascar.


Asunto(s)
Enfermedades Endémicas , Genotipo , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Malaria Vivax/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Pruebas Diagnósticas de Rutina , Técnicas de Genotipaje , Humanos , Lactante , Recién Nacido , Madagascar/epidemiología , Masculino , Tamizaje Masivo , Persona de Mediana Edad , Prevalencia , Análisis de Secuencia de ADN , Adulto Joven
10.
Malar J ; 16(1): 442, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29100506

RESUMEN

BACKGROUND: Plasmodium vivax is the most prevalent human malaria parasite and is likely to increase proportionally as malaria control efforts more rapidly impact the prevalence of Plasmodium falciparum. Despite the prominence of P. vivax as a major human pathogen, vivax malaria qualifies as a neglected and under-studied tropical disease. Significant challenges bringing P. vivax into the laboratory, particularly the capacity for long-term propagation of well-characterized strains, have limited the study of this parasite's red blood cell (RBC) invasion mechanism, blood-stage development, gene expression, and genetic manipulation. METHODS AND RESULTS: Patient isolates of P. vivax have been collected and cryopreserved in the rural community of Ampasimpotsy, located in the Tsiroanomandidy Health District of Madagascar. Periodic, monthly overland transport of these cryopreserved isolates to the country's National Malaria Control Programme laboratory in Antananarivo preceded onward sample transfer to laboratories at Case Western Reserve University, USA. There, the P. vivax isolates have been cultured through propagation in the RBCs of Saimiri boliviensis. For the four patient isolates studied to-date, the median time interval between sample collection and in vitro culture has been 454 days (range 166-961 days). The median time in culture, continually documented by light microscopy, has been 159 days; isolate AMP2014.01 was continuously propagated for 233 days. Further studies show that the P. vivax parasites propagated in Saimiri RBCs retain their ability to invade human RBCs, and can be cryopreserved, thawed and successfully returned to productive in vitro culture. CONCLUSIONS/SIGNIFICANCE: Long-term culture of P. vivax is possible in the RBCs of Saimiri boliviensis. These studies provide an alternative to propagation of P. vivax in live animals that are becoming more restricted. In vitro culture of P. vivax in Saimiri RBCs provides an opening to stabilize patient isolates, which would serve as precious resources to apply new strategies for investigating the molecular and cellular biology of this important malaria parasite.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Plasmodium vivax/fisiología , Saimiri/parasitología , Animales , Criopreservación , Eritrocitos/parasitología , Humanos , Madagascar , Saimiri/sangre , Manejo de Especímenes
11.
P N G Med J ; 60(1-2): 51-59, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30147152

RESUMEN

Polymorphisms in Toll-like receptor (TLR) and human ß-defensin (hBD, encoded by DEFB) genes have been evaluated for their associations with HIV infection and disease outcomes. Those studies, conducted in various populations under a variety of study designs, generally revealed that specific single nucleotide polymorphisms (SNPs) in TLR1, 2, 3, 4, 6, 7, 8, and 9 genes, and copy number variation (CNV) in DEFB4 (encoding hBD-2), DEFB103A (encoding hBD-3), and DEFB104A (encoding hBD-4) genes are among potential genetic factors that can affect susceptibility to HIV infection and/or disease progression. The information regarding their prevalence in Papua New Guinea (PNG) is very limited for TLR SNPs, and not available for DEFB CNV. The present study provides a preliminary assessment of these genetic polymorphisms in samples collected from the Wosera (East Sepik Province, n = 29) and Liksul (Madang Province, n = 23) areas. Wosera samples were analyzed for a total of 41 SNPs in 8 TLR genes (TLR1, 2, 3, 4, 6, 7, 8, and 9), and both sample sets were analyzed for CNV in DEFB4/103A/104A genes. A number of TLR SNPs were not detected, and many other SNPs were present at low frequencies (minor allele frequencies ≤0.05) in the Wosera samples. The DEFB4/103A/104A copy numbers were significantly different between the two sample sets (p = 0.024). Validation of these results, using larger sample sizes as well as samples from other areas of PNG, is warranted. In addition, genetic association studies are needed to estimate the effects of these polymorphisms on HIV infection and disease progression in PNG.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Infecciones por VIH/genética , Receptores Toll-Like/genética , beta-Defensinas/genética , Frecuencia de los Genes/genética , Humanos , Papúa Nueva Guinea/epidemiología , Polimorfismo de Nucleótido Simple
12.
N Engl J Med ; 369(8): 745-53, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23964936

RESUMEN

BACKGROUND: Global efforts to eliminate lymphatic filariasis are based on the annual mass administration of antifilarial drugs to reduce the microfilaria reservoir available to the mosquito vector. Insecticide-treated bed nets are being widely used in areas in which filariasis and malaria are coendemic. METHODS: We studied five villages in which five annual mass administrations of antifilarial drugs, which were completed in 1998, reduced the transmission of Wuchereria bancrofti, one of the nematodes that cause lymphatic filariasis. A total of 21,899 anopheles mosquitoes were collected for 26 months before and 11 to 36 months after bed nets treated with long-lasting insecticide were distributed in 2009. We evaluated the status of filarial infection and the presence of W. bancrofti DNA in anopheline mosquitoes before and after the introduction of insecticide-treated bed nets. We then used a model of population dynamics to estimate the probabilities of transmission cessation. RESULTS: Village-specific rates of bites from anopheline mosquitoes ranged from 6.4 to 61.3 bites per person per day before the bed-net distribution and from 1.1 to 9.4 bites for 11 months after distribution (P<0.001). During the same period, the rate of detection of W. bancrofti in anopheline mosquitoes decreased from 1.8% to 0.4% (P=0.005), and the rate of detection of filarial DNA decreased from 19.4% to 14.9% (P=0.13). The annual transmission potential was 5 to 325 infective larvae inoculated per person per year before the bed-net distribution and 0 after the distribution. Among all five villages with a prevalence of microfilariae of 2 to 38%, the probability of transmission cessation increased from less than 1.0% before the bed-net distribution to a range of 4.9 to 95% in the 11 months after distribution. CONCLUSIONS: Vector control with insecticide-treated bed nets is a valuable tool for W. bancrofti elimination in areas in which anopheline mosquitoes transmit the parasite. (Funded by the U.S. Public Health Service and the National Institutes of Health.).


Asunto(s)
Filariasis Linfática/prevención & control , Mosquiteros Tratados con Insecticida , Control de Mosquitos/métodos , Wuchereria bancrofti , Animales , Anopheles/fisiología , Filariasis Linfática/transmisión , Humanos , Mordeduras y Picaduras de Insectos/epidemiología , Insectos Vectores , Insecticidas , Nitrilos , Papúa Nueva Guinea , Prevalencia , Piretrinas
13.
Mol Ecol ; 25(7): 1465-77, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26850696

RESUMEN

Wuchereria bancrofti is a parasitic nematode and the primary cause of lymphatic filariasis--a disease specific to humans. W. bancrofti currently infects over 90 million people throughout the tropics and has been acknowledged by the world health organization as a vulnerable parasite. Current research has focused primarily on the clinical manifestations of disease and little is known about the evolutionary history of W. bancrofti. To improve upon knowledge of the evolutionary history of W. bancrofti, we whole genome sequenced 13 W. bancrofti larvae. We circumvent many of the difficulties of multiple infections by sampling larvae directly from mosquitoes that were experimentally inoculated with infected blood. To begin, we used whole genome data to reconstruct the historical population size. Our results support a history of fluctuating population sizes that can be correlated with human migration and fluctuating mosquito abundances. Next, we reconstructed the putative pedigree of W. bancrofti worms within an infection using the kinship coefficient. We deduced that there are full-sib and half-sib relationships residing within the same larval cohort. Through combined analysis of the mitochondrial and nuclear genomes we concluded that this is likely a results of polyandrous mating, the first time reported for W. bancrofti. Lastly, we scanned the genomes for signatures of natural selection. Annotation of putative selected regions identified proteins that may have aided in a parasitic life style or may have evolved to protect against current drug treatments. We discuss our results in the greater context of understanding the biology of an animal with a unique life history and ecology.


Asunto(s)
Culicidae/parasitología , Genética de Población , Genoma de los Helmintos , Wuchereria bancrofti/genética , Animales , Genoma Mitocondrial , Larva , Papúa Nueva Guinea , Filogenia , Selección Genética
14.
Malar J ; 15(1): 502, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27756389

RESUMEN

BACKGROUND: Malaria remains a major public health problem in Madagascar. Widespread scale-up of intervention coverage has led to substantial reductions in case numbers since 2000. However, political instability since 2009 has disrupted these efforts, and a resurgence of malaria has since followed. This paper re-visits the sub-national stratification of malaria transmission across Madagascar to propose a contemporary update, and evaluates the reported routine case data reported at this sub-national scale. METHODS: Two independent malariometrics were evaluated to re-examine the status of malaria across Madagascar. First, modelled maps of Plasmodium falciparum infection prevalence (PfPR) from the Malaria Atlas Project were used to update the sub-national stratification into 'ecozones' based on transmission intensity. Second, routine reports of case data from health facilities were synthesized from 2010 to 2015 to compare the sub-national epidemiology across the updated ecozones over time. Proxy indicators of data completeness are investigated. RESULTS: The epidemiology of malaria is highly diverse across the island's ecological regions, with eight contiguous ecozones emerging from the transmission intensity PfPR map. East and west coastal areas have highest transmission year-round, contrasting with the central highlands and desert south where trends appear more closely associated with epidemic outbreak events. Ecozones have shown steady increases in reported malaria cases since 2010, with a near doubling of raw reported case numbers from 2014 to 2015. Gauges of data completeness suggest that interpretation of raw reported case numbers will underestimate true caseload as only approximately 60-75 % of health facility data are reported to the central level each month. DISCUSSION: A sub-national perspective is essential when monitoring the epidemiology of malaria in Madagascar and assessing local control needs. A robust assessment of the status of malaria at a time when intervention coverage efforts are being scaled up provides a platform from which to guide intervention preparedness and assess change in future periods of transmission.


Asunto(s)
Monitoreo Epidemiológico , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Topografía Médica , Adolescente , Niño , Preescolar , Control de Enfermedades Transmisibles/organización & administración , Transmisión de Enfermedad Infecciosa/prevención & control , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Madagascar/epidemiología , Malaria Falciparum/prevención & control , Masculino
15.
Malar J ; 15: 25, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26753618

RESUMEN

BACKGROUND: The major malaria vectors of Papua New Guinea exhibit heterogeneities in distribution, biting behaviour and malaria infection levels. Long-lasting, insecticide-treated nets (LLINs), distributed as part of the National Malaria Control Programme, are the primary intervention targeting malaria transmission. This study evaluated the impact of LLINs on anopheline density, species composition, feeding behaviour, and malaria transmission. METHODS: Mosquitoes were collected by human landing catch in 11 villages from East Sepik Province and Madang Province. Mosquitoes were collected for 3 years (1 year before distribution and 2 years after), and assayed to determine mosquito species and Plasmodium spp. infection prevalence. The influence of weather conditions and the presence of people and animals on biting density was determined. Determinants of biting density and sporozoite prevalence were analysed by generalized estimating equations (GEE). RESULTS: Mosquito biting rates and entomological inoculation rates decreased significantly after the distribution. Plasmodium falciparum and P. vivax sporozoite prevalence decreased in year 2, but increased in year 3, suggesting the likelihood of resurgence in transmission if low biting rates are not maintained. An earlier shift in the median biting time of Anopheles punctulatus and An. farauti s.s. was observed. However, this was not accompanied by an increase in the proportion of infective bites occurring before 2200 hours. A change in species composition was observed, which resulted in dominance of An. punctulatus in Dreikikir region, but a decrease in An. punctulatus in the Madang region. When controlling for village and study year, An. farauti s.s., An. koliensis and An. punctulatus were equally likely to carry P. vivax sporozoites. However, An. punctulatus was significantly more likely than An. farauti s.s. (OR 0.14; p = 0.007) or An. koliensis (OR 0.27; p < 0.001) to carry P. falciparum sporozoites. CONCLUSIONS: LLINs had a significant impact on malaria transmission, despite exophagic and crepuscular feeding behaviours of dominant vectors. Changes in species composition and feeding behaviour were observed, but their epidemiological significance will depend on their durability over time.


Asunto(s)
Insecticidas/uso terapéutico , Malaria/transmisión , Control de Mosquitos/métodos , Mosquiteros , Animales , Anopheles/parasitología , Humanos , Insectos Vectores , Malaria/tratamiento farmacológico , Malaria/parasitología , Papúa Nueva Guinea
16.
Curr Opin Infect Dis ; 28(5): 446-54, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26203855

RESUMEN

PURPOSE OF REVIEW: Limitations of blood smear microscopy contributed to failure of the 1950-1960s WHO Global Programme to Eliminate Malaria. All diagnostic methods encounter limits of detection (LOD) beyond which it will not be possible to identify infected individuals. When this occurs, it becomes difficult to continue evaluating progress of malaria elimination. The purpose of this review is to compare available diagnostic technologies, factors that underlie their LOD, and their potential roles related to the goal of elimination. RECENT FINDINGS: Parasite-containing cells, parasite proteins, hemozoin, nucleic acids, and parasite-specific human antibodies are targets of diagnosis. Many studies report advantages of technologies to detect these diagnostic targets. Nucleic acid amplification tests and strategies for enriching capture of malaria diagnostic targets have consistently identified a parasite reservoir not detected by methods focused on the other biological targets. Exploiting magnetic properties of hemozoin may open new strategies for noninvasive malaria diagnosis. SUMMARY: Microscopy and rapid diagnostic tests provide effective surveillance for malaria control. Strategies that detect a reservoir of submicroscopic infection must be developed and standardized to guide malaria elimination.


Asunto(s)
Malaria/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Humanos , Límite de Detección , Malaria/parasitología
17.
Mol Ecol ; 24(6): 1263-74, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25677924

RESUMEN

Anopheles mosquitoes are the vectors of several human diseases including malaria. In many malaria endemic areas, several species of Anopheles coexist, sometimes in the form of related sibling species that are morphologically indistinguishable. Determining the size and organization of Anopheles populations, and possible ongoing gene flow among them is important for malaria control and, in particular, for monitoring the spread of insecticide resistance alleles. However, these parameters have been difficult to evaluate in most Anopheles species due to the paucity of genetic data available. Here, we assess the extent of contemporary gene flow and historical variations in population size by sequencing and de novo assembling the genomes of wild-caught mosquitoes from four species of the Anopheles punctulatus group of Papua New Guinea. Our analysis of more than 50 Mb of orthologous DNA sequences revealed no evidence of contemporary gene flow among these mosquitoes. In addition, investigation of the demography of two of the An. punctulatus species revealed distinct population histories. Overall, our analyses suggest that, despite their similarities in morphology, behaviour and ecology, contemporary sympatric populations of An. punctulatus are evolving independently.


Asunto(s)
Anopheles/genética , Flujo Génico , Genoma de los Insectos , Animales , Anopheles/clasificación , Genética de Población , Papúa Nueva Guinea , Filogenia , Polimorfismo de Nucleótido Simple , Densidad de Población , Análisis de Secuencia de ADN
18.
Blood ; 132(3): 243, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30026302
19.
Malar J ; 14: 399, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26452541

RESUMEN

BACKGROUND: Drug resistance remains a major obstacle to malaria treatment and control. It can arise and spread rapidly, and vary substantially even at sub-national level. National malaria programmes require cost-effective and timely ways of characterizing drug-resistance at multiple sites within their countries. METHODS: An improved multiplexed post-PCR ligase detection reaction-fluorescent microsphere assay (LDR-FMA) was used to simultaneously determine the presence of mutations in chloroquine resistance transporter (crt), multidrug resistance 1 (mdr1), dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes in Plasmodium falciparum (n = 727) and Plasmodium vivax (n = 574) isolates collected in 2006 from cross-sectional community population surveys in two geographically distinct regions (Madang and East Sepik) of Papua New Guinea (PNG) where strong regional differences in in vivo aminoquinoline and antifolate therapeutic efficacy had previously been observed. Data were compared to those of a follow-up survey conducted in 2010. RESULTS: Despite some very low parasite densities, the assay successfully amplified all P. falciparum and P. vivax loci in 77 and 69 % of samples, respectively. In 2006, prevalences of pfdhfr (59R-108 N) double mutation/wild type pfdhps haplotype, pfcrt SVMNT haplotype (72S-76T double mutation), and 86Y pfmdr1 mutation all exceeded 90 %. For P. vivax, 65 % carried at least two pvdhfr mutations, 97 % the 647P pvdhps mutation and 54 % the 976F pvmdr1 mutation. Prevalence of mutant haplotypes was higher in Madang than East Sepik for pfcrt SVMNT (97.4 vs 83.3 %, p = 0.001), pfdhfr (59R-108 N) (100 vs 90.6 %, p = 0.001), pvdhfr haplotypes (75.8 vs 47.6 %, p = 0.001) and pvmdr1 976F (71.2 vs 26.2 %, p < 0.001). Data from a subsequent Madang survey in 2010 showed that the prevalence of pfdhps mutations increased significantly from <5 % to >30 % (p < 0.001) as did the prevalence of pvdhfr mutant haplotypes (from 75.8 to 97.4 %, p = 0.012). CONCLUSIONS: This LDR-FMA multiplex platform shows feasibility for low-cost, high-throughput, rapid characterization of a broad range of drug-resistance markers in low parasitaemia infections. Significant geographical differences in mutation prevalence correlate with previous genotyping surveys and in vivo trials and may reflect variable drug pressure and differences in health-care access in these two PNG populations.


Asunto(s)
Resistencia a Medicamentos , Malaria Falciparum/parasitología , Malaria Vivax/parasitología , Mutación , Plasmodium falciparum/genética , Plasmodium vivax/genética , Adulto , Estudios Transversales , Genotipo , Técnicas de Genotipaje , Geografía , Humanos , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Papúa Nueva Guinea/epidemiología , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Prevalencia
20.
Proc Natl Acad Sci U S A ; 109(25): 10030-5, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22665809

RESUMEN

Genotyping Plasmodium falciparum parasites in longitudinal studies provides a robust approach to estimating force of infection (FOI) in the presence of superinfections. The molecular parameter (mol)FOI, defined as the number of new P. falciparum clones acquired over time, describes basic malaria epidemiology and is suitable for measuring outcomes of interventions. This study was designed to test whether (mol)FOI influenced the risk of clinical malaria episodes and how far (mol)FOI reflected environmental determinants of transmission, such as seasonality and small-scale geographical variation or effects of insecticide-treated nets (ITNs). Two hundred sixty-four children 1-3 y of age from Papua New Guinea were followed over 16 mo. Individual parasite clones were tracked longitudinally by genotyping. On average, children acquired 5.9 (SD 9.6) new P. falciparum infections per child per y. (mol)FOI showed a pronounced seasonality, was strongly reduced in children using ITNs (incidence rate ratio, 0.49; 95% confidence interval, [0.38, 0.61]), increased with age, and significantly varied within villages (P = 0.001). The acquisition of new parasite clones was the major factor determining the risk of clinical illness (incidence rate ratio, 2.12; 95% confidence interval, [1.93, 2.31]). Adjusting for individual differences in (mol)FOI completely explained spatial variation, age trends, and the effect of ITN use. This study highlights the suitability of (mol)FOI as a measure of individual exposure and its central role in malaria epidemiology. It has substantial advantages over entomological measures in studies of transmission patterns, and could be used in analyses of host variation in susceptibility, in field efficacy trials of novel interventions or vaccines, and for evaluating intervention effects.


Asunto(s)
Malaria Falciparum/epidemiología , Preescolar , Humanos , Lactante , Papúa Nueva Guinea/epidemiología , Prevalencia , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA