Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(23): E4686-E4694, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533418

RESUMEN

Schizophrenia is a devastating disease that arises on the background of genetic predisposition and environmental risk factors, such as early life stress (ELS). In this study, we show that ELS-induced schizophrenia-like phenotypes in mice correlate with a widespread increase of histone-deacetylase 1 (Hdac1) expression that is linked to altered DNA methylation. Hdac1 overexpression in neurons of the medial prefrontal cortex, but not in the dorsal or ventral hippocampus, mimics schizophrenia-like phenotypes induced by ELS. Systemic administration of an HDAC inhibitor rescues the detrimental effects of ELS when applied after the manifestation of disease phenotypes. In addition to the hippocampus and prefrontal cortex, mice subjected to ELS exhibit increased Hdac1 expression in blood. Moreover, Hdac1 levels are increased in blood samples from patients with schizophrenia who had encountered ELS, compared with patients without ELS experience. Our data suggest that HDAC1 inhibition should be considered as a therapeutic approach to treat schizophrenia.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Esquizofrenia/enzimología , Estrés Psicológico/enzimología , Adulto , Anciano , Animales , Metilación de ADN , Femenino , Hipocampo/enzimología , Histona Desacetilasa 1/sangre , Histona Desacetilasa 1/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Persona de Mediana Edad , Fenotipo , Corteza Prefrontal/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esquizofrenia/etiología , Esquizofrenia/genética , Estrés Psicológico/complicaciones , Estrés Psicológico/genética , Adulto Joven
2.
Sensors (Basel) ; 20(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059396

RESUMEN

Various neural network based methods are capable of anticipating human body motions from data for a short period of time. What these methods lack are the interpretability and explainability of the network and its results. We propose to use Dynamic Mode Decomposition with delays to represent and anticipate human body motions. Exploring the influence of the number of delays on the reconstruction and prediction of various motion classes, we show that the anticipation errors in our results are comparable to or even better for very short anticipation times ( < 0 . 4 sec) than a recurrent neural network based method. We perceive our method as a first step towards the interpretability of the results by representing human body motions as linear combinations of previous states and delays. In addition, compared to the neural network based methods large training times are not needed. Actually, our methods do not even regress to any other motions than the one to be anticipated and hence it is of a generic nature.


Asunto(s)
Cuerpo Humano , Movimiento (Física) , Algoritmos , Humanos , Redes Neurales de la Computación
3.
Biochemistry ; 58(27): 2987-2995, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31243995

RESUMEN

For years, antibodies (Abs) have been used as a paradigm for understanding how protein structure contributes to molecular recognition. However, with the ability to evolve Abs that recognize specific chromophores, they also have great potential as models for how protein dynamics contribute to molecular recognition. We previously raised murine Abs to different chromophores and, with the use of three-pulse photon echo peak shift spectroscopy, demonstrated that the immune system is capable of producing Abs with widely varying flexibility. We now report the characterization of the complexes formed between two Abs, 5D11 and 10A6, and the chromophoric ligand that they were evolved to recognize, 8-methoxypyrene-1,3,6-trisulfonic acid (MPTS). The sequences of the Ab genes indicate that they evolved from a common precursor. We also used a variety of spectroscopic methods to probe the photophysics and dynamics of the Ab-MPTS complexes and found that they are similar to each other but distinct from previously characterized anti-MPTS Abs. Structural studies revealed that this difference likely results from a unique mode of binding in which MPTS is sandwiched between the side chain of PheH98, which interacts with the chromophore via T-stacking, and the side chain of TrpL91, which interacts with the chromophore via parallel stacking. The T-stacking interaction appears to mediate relaxation on the picosecond time scale, while the parallel stacking appears to mediate relaxation on an ultrafast, femtosecond time scale, which dominates the response. The anti-MPTS Abs thus not only demonstrate the simultaneous use of the two limiting modes of stacking for molecular recognition, but also provide a unique opportunity to characterize how dynamics might contribute to molecular recognition. Both types of stacking are common in proteins and protein complexes where they may similarly contribute to dynamics and molecular recognition.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos , Pirenos/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Formación de Anticuerpos , Cristalografía por Rayos X , Ratones , Modelos Moleculares
4.
Chem Rev ; 117(3): 1927-1969, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28106985

RESUMEN

Vibrational spectroscopy provides a direct route to the physicochemical characterization of molecules. While both IR and Raman spectroscopy have been used for decades to provide detailed characterizations of small molecules, similar studies with proteins are largely precluded due to spectral congestion. However, the vibrational spectra of proteins do include a "transparent window", between ∼1800 and ∼2500 cm-1, and progress is now being made to develop site-specifically incorporated carbon-deuterium (C-D), cyano (CN), thiocyanate (SCN), and azide (N3) "transparent window vibrational probes" that absorb within this window and report on their environment to facilitate the characterization of proteins with small molecule-like detail. This Review opens with a brief discussion of the advantages and limitations of conventional vibrational spectroscopy and then discusses the strengths and weaknesses of the different transparent window vibrational probes, methods by which they may be site-specifically incorporated into peptides and proteins, and the physicochemical properties they may be used to study, including electrostatics, stability and folding, hydrogen bonding, protonation, solvation, dynamics, and interactions with inhibitors. The use of the probes to vibrationally image proteins and other biomolecules within cells is also discussed. We then present four case studies, focused on ketosteroid isomerase, the SH3 domain, dihydrofolate reductase, and cytochrome c, where the transparent window vibrational probes have already been used to elucidate important aspects of protein structure and function. The Review concludes by highlighting the current challenges and future potential of using transparent window vibrational probes to understand the evolution and function of proteins and other biomolecules.


Asunto(s)
Sondas Moleculares/química , Proteínas/química , Conformación Proteica , Espectrofotometría Infrarroja , Análisis Espectral/métodos , Vibración
5.
Am J Med Genet B Neuropsychiatr Genet ; 180(2): 89-102, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30070057

RESUMEN

In current diagnostic systems, schizophrenia and bipolar disorder are still conceptualized as distinct categorical entities. Recently, both clinical and genomic evidence have challenged this Kraepelinian dichotomy. There are only few longitudinal studies addressing potential overlaps between these conditions. Here, we present design and first results of the PsyCourse study (N = 891 individuals at baseline), an ongoing transdiagnostic study of the affective-to-psychotic continuum that combines longitudinal deep phenotyping and dimensional assessment of psychopathology with an extensive collection of biomaterial. To provide an initial characterization of the PsyCourse study sample, we compare two broad diagnostic groups defined by the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) classification system, that is, predominantly affective (n = 367 individuals) versus predominantly psychotic disorders (n = 524 individuals). Depressive, manic, and psychotic symptoms as well as global functioning over time were contrasted using linear mixed models. Furthermore, we explored the effects of polygenic risk scores for schizophrenia on diagnostic group membership and addressed their effects on nonparticipation in follow-up visits. While phenotypic results confirmed expected differences in current psychotic symptoms and global functioning, both manic and depressive symptoms did not vary between both groups after correction for multiple testing. Polygenic risk scores for schizophrenia significantly explained part of the variability of diagnostic group. The PsyCourse study presents a unique resource to research the complex relationships of psychopathology and biology in severe mental disorders not confined to traditional diagnostic boundaries and is open for collaborations.


Asunto(s)
Trastornos Mentales/diagnóstico , Trastornos Mentales/psicología , Trastornos Psicóticos/diagnóstico , Adulto , Anciano , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/psicología , Manual Diagnóstico y Estadístico de los Trastornos Mentales , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Fenotipo , Psicopatología/métodos , Trastornos Psicóticos/psicología , Proyectos de Investigación , Esquizofrenia/diagnóstico , Psicología del Esquizofrénico
6.
J Phys Chem A ; 122(1): 446-450, 2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29260873

RESUMEN

Hydrogen-bonds (H-bonds) between backbone N-H donors and CO acceptors are central to our understanding of protein structure and stability. However, while interactions between backbone N atoms and the N-H of the following residue are also common, they have been ignored as potential H-bonds due to their bent geometry and the assumption that the amide N is a poor H-bond acceptor. Recently, we reported indirect experimental evidence that these interactions constitute functional H-bonds. We now report a combined atoms in molecules and noncovalent interaction theoretical analysis of electron density that unambiguously supports the characterization of these interactions as H-bonds. The calculations further suggest that the Ni+1-H···Ni H-bonds are largely electrostatic in nature and, importantly, that they make a significant contribution to stability. Thus, given their apparently frequent occurrence, Ni+1-H···Ni H-bonds likely make critical, but previously unrecognized, contributions to protein structure and function.


Asunto(s)
Hidrógeno/química , Níquel/química , Proteínas/química , Monóxido de Carbono/química , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica , Estabilidad Proteica
7.
Biochemistry ; 56(22): 2787-2793, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28547993

RESUMEN

The morphogenic activity of the Drosophila transcription factor bicoid (Bcd), the first morphogenic protein identified, is controlled by its DNA binding homeodomain. Homeodomains mediate developmental processes in all multicellular organisms, but the Bcd homeodomain appears to be unique as it can bind multiple DNA sequences and even RNA. All homeodomain proteins adopt a three-helix fold, with residues of the third helix mediating recognition of the nucleic acid target via interactions with the major groove. Interestingly, previous studies have revealed that conformational heterogeneity is present in the Bcd residues that interact with bound DNA, suggesting that it may underlie the morphogen's unique polyspecificity. To begin to directly characterize the conformational heterogeneity in the homeodomain, we have introduced C-D bonds within each structural element and characterized their absorptions in the free and bound states, as well as during thermal denaturation. The data reveal that while residues within the first two helices experience unique environments, each environment is well-defined and similar in the presence and absence of bound DNA. In contrast, the data are consistent with residues within the recognition helix adopting multiple conformations, and while the binding of DNA does alter the environments, the conformational heterogeneity is similar in the bound and unbound states. Finally, thermal denaturation studies reveal that the conformational heterogeneity observed in this and previous studies results not from local instability and unfolding, as has been suggested for other transcription factors, but rather from the population of multiple stable conformations within the folded state of the protein. The results have important implications for how Bcd recognizes its different targets to mediate its critical developmental functions.


Asunto(s)
ADN/química , Proteínas de Homeodominio/química , Transactivadores/química , Dicroismo Circular , Proteínas de Drosophila , Proteínas de Homeodominio/metabolismo , Unión Proteica , Conformación Proteica , Espectroscopía Infrarroja por Transformada de Fourier , Transactivadores/metabolismo
8.
Chembiochem ; 18(6): 563-569, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28103392

RESUMEN

Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates, including less-activated hydrocarbons, by transferring peroxide-borne oxygen. We investigated a cell-free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule testosterone by a novel unspecific peroxygenase (UPO) that is produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and nitrogen. Purification by fast protein liquid chromatography revealed two enzyme fractions with the same molecular mass (36 kDa) and with specific activity of 4.4 to 12 U mg-1 . Although the well-known UPOs of Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) failed to convert testosterone in a comparative study, the UPO of C. globosum (CglUPO) accepted testosterone as substrate and converted it with total turnover number (TTN) of up to 7000 into two oxygenated products: the 4,5-epoxide of testosterone in ß-configuration and 16α-hydroxytestosterone. The reaction performed on a 100 mg scale resulted in the formation of about 90 % of the epoxide and 10 % of the hydroxylation product, both of which could be isolated with purities above 96 %. Thus, CglUPO is a promising biocatalyst for the oxyfunctionalization of bulky steroids and it will be a useful tool for the synthesis of pharmaceutically relevant steroidal molecules.


Asunto(s)
Chaetomium/enzimología , Oxigenasas de Función Mixta/farmacología , Oxígeno/metabolismo , Testosterona/metabolismo , Secuencia de Aminoácidos , Catálisis/efectos de los fármacos , Química Farmacéutica , Cromatografía Líquida de Alta Presión , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/aislamiento & purificación
9.
BMC Bioinformatics ; 17(1): 532, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27978814

RESUMEN

BACKGROUND: Biological systems and processes are highly dynamic. To gain insights into their functioning time-resolved measurements are necessary. Time-resolved gene expression data captures temporal behaviour of the genes genome-wide under various biological conditions: in response to stimuli, during cell cycle, differentiation or developmental programs. Dissecting dynamic gene expression patterns from this data may shed light on the functioning of the gene regulatory system. The present approach facilitates this discovery. The fundamental idea behind it is the following: there are change-points (switches) in the gene behaviour separating intervals of increasing and decreasing activity, whereas the intervals may have different durations. Elucidating the switch-points is important for the identification of biologically meanigfull features and patterns of the gene dynamics. RESULTS: We developed a statistical method, called SwitchFinder, for the analysis of time-series data, in particular gene expression data, based on a change-point model. Fitting the model to the gene expression time-courses indicates switch-points between increasing and decreasing activities of each gene. Two types of the model - based on linear and on generalized logistic function - were used to capture the data between the switch-points. Model inference was facilitated with the Bayesian methodology using Markov chain Monte Carlo (MCMC) technique Gibbs sampling. Further on, we introduced features of the switch-points: growth, decay, spike and cleft, which reflect important dynamic aspects. With this, the gene expression profiles are represented in a qualitative manner - as sets of the dynamic features at their onset-times. We developed a Web application of the approach, enabling to put queries to the gene expression time-courses and to deduce groups of genes with common dynamic patterns. SwitchFinder was applied to our original data - the gene expression time-series measured in neuroblastoma cell line upon treatment with all-trans retinoic acid (ATRA). The analysis revealed eight patterns of the gene expression responses to ATRA, indicating the induction of the BMP, WNT, Notch, FGF and NTRK-receptor signaling pathways involved in cell differentiation, as well as the repression of the cell-cycle related genes. CONCLUSIONS: SwitchFinder is a novel approach to the analysis of biological time-series data, supporting inference and interactive exploration of its inherent dynamic patterns, hence facilitating biological discovery process. SwitchFinder is freely available at https://newbioinformatics.eu/switchfinder.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Animales , Ciclo Celular , Humanos , Internet , Modelos Teóricos , Método de Montecarlo , Proteínas/genética , Programas Informáticos
10.
Nat Methods ; 10(8): 759-61, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23817067

RESUMEN

We designed ß-strand peptides that stabilize integral membrane proteins (IMPs). ß-strand peptides self-assemble in solution as filaments and become restructured upon association with IMPs; resulting IMP-ß-strand peptide complexes resisted aggregation when diluted in detergent-free buffer and were visible as stable, single particles with low detergent background in electron micrographs. ß-strand peptides enabled clear visualization of flexible conformations in the highly dynamic ATP-binding cassette (ABC) transporter MsbA.


Asunto(s)
Proteínas de la Membrana/química , Nanoestructuras/química , Péptidos/química , Péptidos/síntesis química , Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Dicroismo Circular , Proteínas de la Membrana/síntesis química , Microscopía Electrónica de Transmisión , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier
11.
Biochemistry ; 54(11): 2085-93, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25756188

RESUMEN

While adaptive mutations can bestow new functions on proteins via the introduction or optimization of reactive centers, or other structural changes, a role for the optimization of protein dynamics also seems likely but has been more difficult to evaluate. Antibody (Ab) affinity maturation is an example of adaptive evolution wherein the adaptive mutations may be identified and Abs may be raised to specific targets that facilitate the characterization of protein dynamics. Here, we report the characterization of three affinity matured Abs that evolved from a common germline precursor to bind the chromophoric antigen (Ag), 8-methoxypyrene-1,3,6-trisulfonate (MPTS). In addition to characterizing the sequence, molecular recognition, and structure of each Ab, we characterized the dynamics of each complex by determining their mechanical response to an applied force via three-pulse photon echo peak shift (3PEPS) spectroscopy and deconvoluting the response into elastic, anelastic, and plastic components. We find that for one Ab, affinity maturation was accomplished via the introduction of a single functional group that mediates a direct contact with MPTS and results in a complex with little anelasticity or plasticity. In the other two cases, more mutations were introduced but none directly contact MPTS, and while their effects on structure are subtle, their effects on anelasticity and plasticity are significant, with the level of plasticity correlated with specificity, suggesting that the optimization of protein dynamics may have contributed to affinity maturation. A similar optimization of structure and dynamics may contribute to the evolution of other proteins.


Asunto(s)
Anticuerpos Monoclonales/química , Especificidad de Anticuerpos , Evolución Molecular , Inmunoglobulina G/química , Modelos Inmunológicos , Modelos Moleculares , Mutación , Sustitución de Aminoácidos , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Afinidad de Anticuerpos , Sitios de Unión de Anticuerpos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Hibridomas , Enlace de Hidrógeno , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Cinética , Ratones , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Pirenos/antagonistas & inhibidores , Pirenos/química , Pirenos/metabolismo
12.
Anal Chem ; 87(22): 11561-7, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26523838

RESUMEN

Cyano and thiocyano groups have received attention as IR probes of local protein electrostatics or solvation, due to their strong absorptions and the ability to site specifically incorporate them within proteins. However, interpreting their spectra requires knowing whether they engage in hydrogen bonds (H-bonds). Existing methods for the detection of such H-bonding interactions are based on structural analysis or correlations between IR and NMR signals and are labor intensive and possibly ambiguous. Here, using model systems we show that the absorption frequency of both probes is linearly correlated with temperature and that the slope of the resulting line (frequency-temperature line slope or FTLS) reflects the nature of the probe's microenvironment, including whether or not the probe is engaged in H-bonds. We then show that the same linear dependence is observed with p-cyano phenylalanine, cyanylated cysteine, or cyanylated homocysteine incorporated at different positions within the N-terminal Src homology 3 domain of the murine adapter protein Crk-II. The FTLSs indicate that p-cyano phenylalanine incorporated at two positions is engaged in strong H-bonding, while it is involved in weaker H-bonding at a third position. In contrast, the FTLS of the cyanylated cysteine or cyanylated homocysteine absorptions indicates that they do not engage in H-bonding at either a buried or surface exposed position. While the differences likely reflect side chain flexibility and the probe's ability to avoid solvent, the data suggest that the temperature dependence of the absorption provides a simple method to gauge the probe's environment, including the presence of H-bonding.


Asunto(s)
Cianuros/química , Sondas Moleculares/química , Proteínas Proto-Oncogénicas c-crk/análisis , Temperatura , Tiocianatos/química , Animales , Enlace de Hidrógeno , Ratones , Modelos Moleculares , Estructura Molecular , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier
13.
Biotechnol Bioeng ; 112(10): 2142-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25997799

RESUMEN

Histone deacetylase (HDAC) inhibitors have been exploited for years to improve recombinant protein expression in mammalian production cells. However, global HDAC inhibition is associated with negative effects on various cellular processes. microRNAs (miRNAs) have been shown to regulate gene expression in almost all eukaryotic cell types by controlling entire cellular pathways. Since miRNAs recently have gained much attention as next-generation cell engineering tool to improve Chinese hamster ovary (CHO) cell factories, we were interested if miRNAs are able to specifically repress HDAC expression in CHO cells to circumvent limitations of unspecific HDAC inhibition. We discovered a novel miRNA in CHO cells, miR-2861, which was shown to enhance productivity in various recombinant CHO cell lines. Furthermore, we demonstrate that miR-2861 might post-transcriptionally regulate HDAC5 in CHO cells. Intriguingly, siRNA-mediated HDAC5 suppression could be demonstrated to phenocopy pro-productive effects of miR-2861 in CHO cells. This supports the notion that miRNA-induced inhibition of HDAC5 may contribute to productivity enhancing effects of miR-2861. Furthermore, since product quality is fundamental to safety and functionality of biologics, we examined the effect of HDAC inhibition on critical product quality attributes. In contrast to unspecific HDAC inhibition using VPA, enforced expression of miR-2861 did not negatively influence antibody aggregation or N-glycosylation. Our findings highlight the superiority of miRNA-mediated inhibition of specific HDACs and present miR-2861 as novel cell engineering tool for improving CHO manufacturing cells.


Asunto(s)
Regulación de la Expresión Génica , Inhibidores de Histona Desacetilasas/metabolismo , Ingeniería Metabólica , MicroARNs/metabolismo , Proteínas Recombinantes/biosíntesis , Animales , Anticuerpos/genética , Anticuerpos/metabolismo , Células CHO , Cricetulus , Proteínas Recombinantes/genética
14.
J Am Chem Soc ; 136(39): 13474-7, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25226114

RESUMEN

Many residues within proteins adopt conformations that appear to be stabilized by interactions between an amide N-H and the amide N of the previous residue. To explore whether these interactions constitute hydrogen bonds, we characterized the IR stretching frequencies of deuterated variants of proline and the corresponding carbamate, as well as the four proline residues of an Src homology 3 domain protein. The CδD2 stretching frequencies are shifted to lower energies due to hyperconjugation with Ni electron density, and engaging this density via protonation or the formation of the Ni+1-H···Ni interaction ablates this hyperconjugation and thus induces an otherwise difficult to explain blue shift in the C-D absorptions. Along with density functional theory calculations, the data reveal that the Ni+1-H···Ni interactions constitute H-bonds and suggest that they may play an important and previously underappreciated role in protein folding, structure, and function.


Asunto(s)
Proteínas/química , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Teoría Cuántica
15.
Chemphyschem ; 15(5): 849-53, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24519759

RESUMEN

A variety of IR-active moieties with absorptions that are distinct from those of proteins have been developed as probes of local protein environments, including carbon-deuterium bonds (CD), cyano groups (CN), and azides (N3 ); however, no systematic analysis of their utility in a protein has been published. Previously, we characterized the N-terminal Src homology 3 domain of the murine adapter protein Crk-II (nSH3) with CD bonds site-selectively incorporated throughout, and showed that it is relatively rigid and electrostatically heterogeneous and that it thermally unfolds under equilibrium conditions via a simple two-state mechanism. We now report the synthesis and characterization of eight variants of nSH3 with CN and/or N3 probes at five of the same positions. In agreement with previous studies, the position-dependent spectra suggest that both probes are predominantly sensitive to hydration, and not to their local electrostatic environments. Importantly, both probes also tend to significantly perturb the protein if they are not incorporated at surface-exposed positions. Thus, unlike CD labels, which are both sensitive to their environment and non-perturbative, CN and N3 probes should be used with caution.


Asunto(s)
Sondas Moleculares/química , Proteínas Proto-Oncogénicas c-crk/química , Animales , Azidas/química , Cianuros/química , Deuterio/química , Ratones , Pliegue de Proteína , Proteínas Proto-Oncogénicas c-crk/metabolismo , Espectrofotometría Infrarroja , Temperatura
16.
J Biol Chem ; 287(32): 27139-47, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22685303

RESUMEN

The immune system is remarkable in its ability to produce antibodies (Abs) with virtually any specificity from a limited repertoire of germ line precursors. Although the contribution of sequence diversity to this molecular recognition has been studied for decades, recent models suggest that protein dynamics may also broaden the range of targets recognized. To characterize the contribution of protein dynamics to immunological molecular recognition, we report the sequence, thermodynamic, and time-resolved spectroscopic characterization of a panel of eight Abs elicited to the chromophoric antigen 8-methoxypyrene-1,3,6-trisulfonate (MPTS). Based on the sequence data, three of the Abs arose from unique germ line Abs, whereas the remaining five comprise two sets of siblings that arose by somatic mutation of a common precursor. The thermodynamic data indicate that the Abs recognize MPTS via a variety of mechanisms. Although the spectroscopic data reveal small differences in protein dynamics, the anti-MPTS Abs generally show similar levels of flexibility and conformational heterogeneity, possibly representing the convergent evolution of the dynamics necessary for function. However, one Ab is significantly more rigid and conformationally homogeneous than the others, including a sibling Ab from which it differs by only five somatic mutations. This example of divergent evolution demonstrates that point mutations are capable of fixing significant differences in protein dynamics. The results provide unique insight into how high affinity Abs may be produced that bind virtually any target and possibly, from a more general perspective, how new protein functions are evolved.


Asunto(s)
Formación de Anticuerpos , Proteínas/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Proteínas/inmunología , Homología de Secuencia de Aminoácido
17.
Chemistry ; 19(42): 14205-14209, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24026962

RESUMEN

A class of replicable unnatural DNA base pairs formed between d5SICS and either dMMO2, dDMO, or dNaM were developed. To explore the use of these pairs to produce site-specifically labeled DNA, the synthesis of a variety of derivatives bearing propynyl groups, an analysis of their polymerase-mediated replication, and subsequent site-specific modification of the amplified DNA by Click chemistry is reported. With the d5SICS scaffold a propynyl ether linker is accommodated better than its aliphatic analogue, but not as well as the protected propargyl amine linker explored previously. It was also found that with the dMMO2 and dDMO analogues, the dMMO2 position para to the glycosidic linkage is best suited for linker attachment and that although aliphatic and ether-based linkers are similarly accommodated, the direct attachment of an ethynyl group to the nucleobase core is most well tolerated. To demonstrate the utility of these analogues, a variety of them were used to site-selectively attach a biotin tag to the amplified DNA. Finally, we use d5SICS(CO) -dNaM to couple one or two proteins to amplified DNA, with the double labeled product visualized by atomic force microscopy. The ability to encode the spatial relationships of arrayed molecules in PCR amplifiable DNA should have important applications, ranging from SELEX with functionalities not naturally present in DNA to the production, and perhaps "evolution" of nanomaterials.


Asunto(s)
ADN/química , Nanoestructuras/química , Nucleótidos/química , Emparejamiento Base , Replicación del ADN , Código Genético , Interacciones Hidrofóbicas e Hidrofílicas , Reacción en Cadena de la Polimerasa
18.
Inform Med Unlocked ; 37: 101188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742350

RESUMEN

The aim of this observational retrospective study is to improve early risk stratification of hospitalized Covid-19 patients by predicting in-hospital mortality, transfer to intensive care unit (ICU) and mechanical ventilation from electronic health record data of the first 24 h after admission. Our machine learning model predicts in-hospital mortality (AUC = 0.918), transfer to ICU (AUC = 0.821) and the need for mechanical ventilation (AUC = 0.654) from a few laboratory data of the first 24 h after admission. Models based on dichotomous features indicating whether a laboratory value exceeds or falls below a threshold perform nearly as good as models based on numerical features. We devise completely data-driven and interpretable machine-learning models for the prediction of in-hospital mortality, transfer to ICU and mechanical ventilation for hospitalized Covid-19 patients within 24 h after admission. Numerical values of. CRP and blood sugar and dichotomous indicators for increased partial thromboplastin time (PTT) and glutamic oxaloacetic transaminase (GOT) are amongst the best predictors.

19.
Schizophr Res Cogn ; 32: 100280, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36846489

RESUMEN

As core symptoms of schizophrenia, cognitive deficits contribute substantially to poor outcomes. Early life stress (ELS) can negatively affect cognition in patients with schizophrenia and healthy controls, but the exact nature of the mediating factors is unclear. Therefore, we investigated how ELS, education, and symptom burden are related to cognitive performance. The sample comprised 215 patients with schizophrenia (age, 42.9 ± 12.0 years; 66.0 % male) and 197 healthy controls (age, 38.5 ± 16.4 years; 39.3 % male) from the PsyCourse Study. ELS was assessed with the Childhood Trauma Screener (CTS). We used analyses of covariance and correlation analyses to investigate the association of total ELS load and ELS subtypes with cognitive performance. ELS was reported by 52.1 % of patients and 24.9 % of controls. Independent of ELS, cognitive performance on neuropsychological tests was lower in patients than controls (p < 0.001). ELS load was more closely associated with neurocognitive deficits (cognitive composite score) in controls (r = -0.305, p < 0.001) than in patients (r = -0.163, p = 0.033). Moreover, the higher the ELS load, the more cognitive deficits were found in controls (r = -0.200, p = 0.006), while in patients, this correlation was not significant after adjusting for PANSS. ELS load was more strongly associated with cognitive deficits in healthy controls than in patients. In patients, disease-related positive and negative symptoms may mask the effects of ELS-related cognitive deficits. ELS subtypes were associated with impairments in various cognitive domains. Cognitive deficits appear to be mediated through higher symptom burden and lower educational level.

20.
J Affect Disord ; 325: 1-6, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621676

RESUMEN

BACKGROUND: Mitochondria generate energy through oxidative phosphorylation (OXPHOS). The function of key OXPHOS proteins can be altered by variation in mitochondria-related genes, which may increase the risk of mental illness. We investigated the association of mitochondria-related genes and their genetic risk burden with cognitive performance. METHODS: We leveraged cross-sectional data from 1320 individuals with a severe psychiatric disorder and 466 neurotypical individuals from the PsyCourse Study. The cognitive tests analyzed were the Trail-Making Test, Verbal Digit Span Test, Digit-Symbol Test, and Multiple Choice Vocabulary Intelligence Test. Association analyses between the cognitive tests, and single-nucleotide polymorphisms (SNPs) mapped to mitochondria-related genes, and their polygenic risk score (PRS) for schizophrenia (SCZ) were performed with PLINK 1.9 and R program. RESULTS: We found a significant association (FDR-adjusted p < 0.05) in the Cytochrome C Oxidase Assembly Factor 8 (COA8) gene locus of the OXPHOS pathway with the Verbal Digit Span (forward) test. Mitochondrial PRS was not significantly associated with any of the cognitive tests. LIMITATIONS: Moderate statistical power due to relatively small sample size. CONCLUSIONS: COA8 encodes a poorly characterized mitochondrial protein involved in apoptosis. Here, this gene was associated with the Verbal Digit Span (forward) test, which evaluates short-term memory. Our results warrant replication and may lead to better understanding of cognitive impairment in mental disorders.


Asunto(s)
Disfunción Cognitiva , Esquizofrenia , Humanos , Estudios Transversales , Esquizofrenia/complicaciones , Disfunción Cognitiva/genética , Disfunción Cognitiva/complicaciones , Pruebas Neuropsicológicas , Cognición , Mitocondrias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA