Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cereb Cortex ; 28(12): 4454-4471, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30307491

RESUMEN

Neural stem cells (NSCs) in the adult mouse hippocampus occur in a specific neurogenic niche, where a multitude of extracellular signaling molecules converges to regulate NSC proliferation as well as fate and functional integration. However, the underlying mechanisms how NSCs react to extrinsic signals and convert them to intracellular responses still remains elusive. NSCs contain a functional endocannabinoid system, including the cannabinoid type-1 receptor (CB1). To decipher whether CB1 regulates adult neurogenesis directly or indirectly in vivo, we performed NSC-specific conditional inactivation of CB1 by using triple-transgenic mice. Here, we show that lack of CB1 in NSCs is sufficient to decrease proliferation of the stem cell pool, which consequently leads to a reduction in the number of newborn neurons. Furthermore, neuronal differentiation was compromised at the level of dendritic maturation pointing towards a postsynaptic role of CB1 in vivo. Deteriorated neurogenesis in NSC-specific CB1 knock-outs additionally resulted in reduced long-term potentiation in the hippocampal formation. The observed cellular and physiological alterations led to decreased short-term spatial memory and increased depression-like behavior. These results demonstrate that CB1 expressed in NSCs and their progeny controls neurogenesis in adult mice to regulate the NSC stem cell pool, dendritic morphology, activity-dependent plasticity, and behavior.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo , Células-Madre Neurales/fisiología , Neurogénesis , Receptor Cannabinoide CB1/fisiología , Animales , Conducta Animal , Hipocampo/citología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/citología , Receptor Cannabinoide CB1/genética , Memoria Espacial/fisiología
2.
J Proteome Res ; 15(10): 3585-3601, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27596989

RESUMEN

G protein coupled receptors (GPCRs) exert their effects through multiprotein signaling complexes. The cannabinoid receptor type 1 (CB1) is among the most abundant GPCRs in the mammalian brain and involved in a plethora of physiological functions. We used a combination of viral-mediated cell type-specific expression of a tagged CB1 fusion protein (CB1-SF), tandem affinity purification (TAP) and proteomics on hippocampal mouse tissue to analyze the composition and differences of CB1 protein complexes in glutamatergic neurons and in GABAergic interneurons. Purified proteins underwent tryptic digestion and were identified using deep-coverage data-independent acquisition with ion mobility separation-enhanced mass spectroscopy, leading to the identification of 951 proteins specifically enriched in glutamatergic and GABAergic CB1-SF TAP samples as compared to controls. Gene Ontology and protein network analyses showed an enrichment of single proteins and functional clusters of proteins involved in already well described domains of CB1 functions. Supported by this consistent data set we could confirm already known CB1 interactors, reveal new potentially interacting proteins and differences in cell type-specific signaling properties of CB1, thereby providing the foundation for further functional studies on differential CB1 signaling.


Asunto(s)
Hipocampo/química , Proteoma/análisis , Receptor Cannabinoide CB1/metabolismo , Animales , Cromatografía de Afinidad , Ácido Glutámico/metabolismo , Ratones , Neuronas/química , Unión Proteica , Mapas de Interacción de Proteínas , Transducción de Señal , Ácido gamma-Aminobutírico/metabolismo
3.
Int J Neuropsychopharmacol ; 19(2)2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26232789

RESUMEN

BACKGROUND: Postsynaptically generated 2-arachidonoylglycerol activates the presynaptic cannabinoid type-1 receptor, which is involved in synaptic plasticity at both glutamatergic and GABAergic synapses. However, the differential function of 2-arachidonoylglycerol signaling at glutamatergic vs GABAergic synapses in the context of animal behavior has not been investigated yet. METHODS: Here, we analyzed the role of 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons. Monoacylglycerol lipase, the primary degrading enzyme of 2-arachidonoylglycerol, is expressed at presynaptic sites of excitatory and inhibitory neurons. By adeno-associated virus-mediated overexpression of monoacylglycerol lipase in glutamatergic neurons of the mouse hippocampus, we selectively interfered with 2-arachidonoylglycerol signaling at glutamatergic synapses of these neurons. RESULTS: Genetic modification of monoacylglycerol lipase resulted in a 50% decrease in 2-arachidonoylglycerol tissue levels without affecting the content of the second major endocannabinoid anandamide. A typical electrophysiological read-out for 2-arachidonoylglycerol signaling is the depolarization-induced suppression of excitation and of inhibition. Elevated monoacylglycerol lipase levels at glutamatergic terminals selectively impaired depolarization-induced suppression of excitation, while depolarization-induced suppression of inhibition was not significantly changed. At the behavioral level, mice with impaired hippocampal glutamatergic 2-arachidonoylglycerol signaling exhibited increased anxiety-like behavior but showed no alterations in aversive memory formation and seizure susceptibility. CONCLUSION: Our data indicate that 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons is essential for the animal's adaptation to aversive situations.


Asunto(s)
Ansiedad/metabolismo , Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Ácido Glutámico/metabolismo , Glicéridos/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Convulsiones/metabolismo , Animales , Ansiedad/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , Convulsiones/psicología , Transducción de Señal/fisiología
4.
J Neurosci ; 33(30): 12306-15, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23884937

RESUMEN

While sialylation plays important functions in the nervous system, the complexity of glycosylation pathways and limitations of genetic approaches preclude the efficient analysis of these functions in mammalian organisms. Drosophila has recently emerged as a promising model for studying neural sialylation. Drosophila sialyltransferase, DSiaT, was shown to be involved in the regulation of neural transmission. However, the sialylation pathway was not investigated in Drosophila beyond the DSiaT-mediated step. Here we focused on the function of Drosophila cytidine monophosphate-sialic acid synthetase (CSAS), the enzyme providing a sugar donor for DSiaT. Our results revealed that the expression of CSAS is tightly regulated and restricted to the CNS throughout development and in adult flies. We generated CSAS mutants and analyzed their phenotypes using behavioral and physiological approaches. Our experiments demonstrated that mutant phenotypes of CSAS are similar to those of DSiaT, including decreased longevity, temperature-induced paralysis, locomotor abnormalities, and defects of neural transmission at neuromuscular junctions. Genetic interactions between CSAS, DSiaT, and voltage-gated channel genes paralytic and seizure were consistent with the hypothesis that CSAS and DSiaT function within the same pathway regulating neural excitability. Intriguingly, these interactions also suggested that CSAS and DSiaT have some additional, independent functions. Moreover, unlike its mammalian counterparts that work in the nucleus, Drosophila CSAS was found to be a glycoprotein-bearing N-glycans and predominantly localized in vivo to the Golgi compartment. Our work provides the first systematic analysis of in vivo functions of a eukaryotic CSAS gene and sheds light on evolutionary relationships among metazoan CSAS proteins.


Asunto(s)
Citidina Monofosfato/metabolismo , Proteínas de Drosophila/genética , Drosophila/enzimología , Ligasas/genética , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferasa/genética , Fenómenos Fisiológicos del Sistema Nervioso/genética , Animales , Animales Modificados Genéticamente , Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/fisiología , Ligasas/metabolismo , Longevidad/genética , N-Acilneuraminato Citidililtransferasa/metabolismo , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Parálisis/genética , Parálisis/metabolismo , Vesículas Secretoras/fisiología , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Temperatura
5.
Bioconjug Chem ; 24(9): 1527-32, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-23888876

RESUMEN

Hepcidin is a peptide hormone that regulates homeostasis in iron metabolism. It binds to the sole known cellular iron exporter ferroportin (Fpn), triggers its internalization, and thereby modulates the efflux of iron from cells. This functional property has been adopted in this study to assess the bioactivity and potency of a range of novel fluorescent hepcidin analogues. Hepcidin was selectively labeled with 6-carboxyfluorescein (CF) and 6-carboxytetramethylrhodamine (TMR) using Fmoc solid phase peptide chemistry. Internalization of Fpn by hepcidin was assessed by high-content microscopic analysis. Both K18- and M21K-labeled hepcidin with TMR and CF exhibited measurable potency when tested in cultured MDCK and T47D cells expressing human ferroportin. The bioactivity of the labeled hepcidin varies with the type of fluorophore and site of attachment of the fluorophores on the hepcidin molecule.


Asunto(s)
Hepcidinas/química , Hepcidinas/metabolismo , Animales , Proteínas de Transporte de Catión/metabolismo , Línea Celular , Perros , Fluoresceínas/química , Colorantes Fluorescentes/química , Hepcidinas/síntesis química , Humanos , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Rodaminas/química
6.
Mol Metab ; 74: 101765, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37390979

RESUMEN

OBJECTIVE: Obesity is a major global health problem which can be targeted with new mechanistic diverse pharmacological interventions. Here we evaluate a new long-acting secretin receptor agonist as a potential treatment for obesity. METHODS: BI-3434 was designed as a secretin analog with stabilized peptide backbone and attached fatty acid-based half-life extension group. The peptide was evaluated in vitro for its ability to stimulate cAMP accumulation in a cell line stably expressing recombinant secretin receptor. On the functional level, stimulation of lipolysis in primary adipocytes after treatment with BI-3434 was determined. The ability of BI-3434 to activate secretin receptor in vivo was assessed in a cAMP reporter CRE-Luc mouse model. Furthermore, a diet-induced obesity mouse model was used to test the effects of BI-3434 on body weight and food intake following repeated daily subcutaneous administration alone and in combination with a GLP-1R agonist. RESULTS: BI-3434 potently activated human secretin receptor. However, lipolysis was only weakly induced in primary murine adipocytes. BI-3434 had an extended half-life compared to endogenous secretin and activated target tissues like pancreas, adipose tissue, and stomach in vivo. BI-3434 did not lower food intake in lean or diet-induced obese mice, but it increased energy expenditure after daily administration. This led to a loss of fat mass, which did not translate in a significant effect on body weight. However, treatment in combination with a GLP-1R agonist led to a synergistic effect on body weight loss. CONCLUSIONS: BI-3434 is a highly potent and selective agonist of secretin receptor with an extended pharmacokinetic (PK) profile. Increased energy expenditure after daily treatment with BI-3434 suggests that secretin receptor is involved in metabolic regulation and energy homeostasis. Targeting secretin receptor alone may not be an efficient anti-obesity treatment, but could be combined with anorectic principles like GLP-1R agonists.


Asunto(s)
Hormonas Gastrointestinales , Secretina , Ratones , Humanos , Animales , Secretina/farmacología , Secretina/uso terapéutico , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Peso Corporal , Péptidos/farmacología , Péptidos/uso terapéutico , Dieta Alta en Grasa/efectos adversos
7.
Mol Metab ; 66: 101633, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356832

RESUMEN

OBJECTIVE: Obesity and its associated comorbidities represent a global health challenge with a need for well-tolerated, effective, and mechanistically diverse pharmaceutical interventions. Oxyntomodulin is a gut peptide that activates the glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) and reduces bodyweight by increasing energy expenditure and reducing energy intake in humans. Here we describe the pharmacological profile of the novel glucagon receptor (GCGR)/GLP-1 receptor (GLP-1R) dual agonist BI 456906. METHODS: BI 456906 was characterized using cell-based in vitro assays to determine functional agonism. In vivo pharmacological studies were performed using acute and subchronic dosing regimens to demonstrate target engagement for the GCGR and GLP-1R, and weight lowering efficacy. RESULTS: BI 456906 is a potent, acylated peptide containing a C18 fatty acid as a half-life extending principle to support once-weekly dosing in humans. Pharmacological doses of BI 456906 provided greater bodyweight reductions in mice compared with maximally effective doses of the GLP-1R agonist semaglutide. BI 456906's superior efficacy is the consequence of increased energy expenditure and reduced food intake. Engagement of both receptors in vivo was demonstrated via glucose tolerance, food intake, and gastric emptying tests for the GLP-1R, and liver nicotinamide N-methyltransferase mRNA expression and circulating biomarkers (amino acids, fibroblast growth factor-21) for the GCGR. The dual activity of BI 456906 at the GLP-1R and GCGR was supported using GLP-1R knockout and transgenic reporter mice, and an ex vivo bioactivity assay. CONCLUSIONS: BI 456906 is a potent GCGR/GLP-1R dual agonist with robust anti-obesity efficacy achieved by increasing energy expenditure and decreasing food intake.


Asunto(s)
Péptido 1 Similar al Glucagón , Receptores de Glucagón , Animales , Humanos , Ratones , Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Oxintomodulina/farmacología , Péptidos/farmacología , Péptidos/metabolismo , Receptores de Glucagón/metabolismo
8.
J Immunother Cancer ; 10(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35064010

RESUMEN

BACKGROUND: T cell engaging therapies, like chimeric antigen receptor T cells and T cell bispecific antibodies (TCBs), efficiently redirect T cells towards tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing, a process that is accompanied by the release of cytokines. Despite their promising efficacy in the clinic, treatment with TCBs is associated with a risk of cytokine release syndrome (CRS). The aim of this study was to identify small molecules able to mitigate cytokine release while retaining T cell-mediated tumor killing. METHODS: By screening a library of 52 Food and Drug Administration approved kinase inhibitors for their impact on T cell proliferation and cytokine release after CD3 stimulation, we identified mTOR, JAK and Src kinases inhibitors as potential candidates to modulate TCB-mediated cytokine release at pharmacologically active doses. Using an in vitro model of target cell killing by human peripheral blood mononuclear cells, we assessed the effects of mTOR, JAK and Src kinase inhibitors combined with 2+1 T cell bispecific antibodies (TCBs) including CEA-TCB and CD19-TCB on T cell activation, proliferation and target cell killing measured by flow cytometry and cytokine release measured by Luminex. The combination of mTOR, JAK and Src kinase inhibitors together with CD19-TCB was evaluated in vivo in non-tumor bearing stem cell humanized NSG mice in terms of B cell depletion and in a lymphoma patient-derived xenograft (PDX) model in humanized NSG mice in terms of antitumor efficacy. RESULTS: The effect of Src inhibitors differed from those of mTOR and JAK inhibitors with the suppression of CD19-TCB-induced tumor cell lysis in vitro, whereas mTOR and JAK inhibitors primarily affected TCB-mediated cytokine release. Importantly, we confirmed in vivo that Src, JAK and mTOR inhibitors strongly reduced CD19-TCB-induced cytokine release. In humanized NSG mice, continuous treatment with a Src inhibitor prevented CD19-TCB-mediated B cell depletion in contrast to mTOR and JAK inhibitors, which retained CD19-TCB efficacy. Ultimately, transient treatment with Src, mTOR and JAK inhibitors minimally interfered with antitumor efficacy in a lymphoma PDX model. CONCLUSIONS: Taken together, these data support further evaluation of the use of Src, JAK and mTOR inhibitors as prophylactic treatment to prevent occurrence of CRS.


Asunto(s)
Anticuerpos Biespecíficos/efectos de los fármacos , Citocinas/efectos de los fármacos , Inmunoterapia/métodos , Inhibidores de las Cinasas Janus/uso terapéutico , Inhibidores mTOR/uso terapéutico , Animales , Humanos , Inhibidores de las Cinasas Janus/farmacología , Inhibidores mTOR/farmacología , Ratones
9.
Nanoscale Adv ; 3(9): 2488-2500, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-36134165

RESUMEN

Hollow viral vectors, such as John Cunningham virus-like particles (JC VLPs), provide a unique opportunity to deliver drug cargo into targeted cells and tissue. Current understanding of the entry of JC virus in brain cells has remained insufficient. In particular, interaction of JC VLPs with the blood-brain barrier (BBB) has not been analyzed in detail. Thus, JC VLPs were produced in this study for investigating the trafficking across the BBB. We performed a carotid artery injection procedure for mouse brain to qualitatively study JC VLPs' in vivo binding and distribution and used in vitro approaches to analyze their uptake and export kinetics in brain endothelial cells. Our results show that clathrin-dependent mechanisms contributed to the entry of VLPs into brain endothelial cells, and exocytosis or transcytosis of VLPs across the BBB was observed in vitro. VLPs were found to interact with sialic acid glycans in mouse brain endothelia. The ability of JC VLPs to cross the BBB can be useful in developing a delivery system for transport of genes and small molecule cargoes to the brain.

10.
J Bacteriol ; 191(8): 2834-42, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19201803

RESUMEN

Here, we describe for the first time the Crc (catabolite repression control) protein from the soil bacterium Acinetobacter baylyi. Expression of A. baylyi crc varied according to the growth conditions. A strain with a disrupted crc gene showed the same growth as the wild type on a number of carbon sources. Carbon catabolite repression by acetate and succinate of protocatechuate 3,4-dioxygenase, the key enzyme of protocatechuate breakdown, was strongly reduced in the crc strain, whereas in the wild-type strain it underwent strong catabolite repression. This strong effect was not based on transcriptional regulation because the transcription pattern of the pca-qui operon (encoding protocatechuate 3,4-dioxygenase) did not reflect the derepression in the absence of Crc. pca-qui transcript abundance was slightly increased in the crc strain. Lack of Crc dramatically increased the mRNA stability of the pca-qui transcript (up to 14-fold), whereas two other transcripts (pobA and catA) remained unaffected. p-Hydroxybenzoate hydroxylase activity, encoded by pobA, was not significantly different in the absence of Crc, as protocatechuate 3,4-dioxygenase was. It is proposed that A. baylyi Crc is involved in the determination of the transcript stability of the pca-qui operon and thereby effects catabolite repression.


Asunto(s)
Acinetobacter/fisiología , Proteínas Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Hidrocarburos Aromáticos/metabolismo , Estabilidad del ARN , Proteínas Represoras/fisiología , 4-Hidroxibenzoato-3-Monooxigenasa/biosíntesis , Ácido Acético/metabolismo , Acinetobacter/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Carbono/metabolismo , Represión Enzimática , Enzimas/biosíntesis , Eliminación de Gen , Perfilación de la Expresión Génica , Modelos Biológicos , Datos de Secuencia Molecular , Protocatecuato-3,4-Dioxigenasa/biosíntesis , Proteínas Represoras/genética , Alineación de Secuencia , Ácido Succínico/metabolismo
11.
Neuropsychopharmacology ; 44(8): 1377-1388, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30532004

RESUMEN

Endocannabinoid signaling via anandamide (AEA) is implicated in a variety of neuronal functions and considered a promising therapeutic target for numerous emotion-related disorders. The major AEA degrading enzyme is fatty acid amide hydrolase (FAAH). Genetic deletion and pharmacological inhibition of FAAH reduce anxiety and improve emotional responses and memory in rodents and humans. Complementarily, the mechanisms and impact of decreased AEA signaling remain to be delineated in detail. In the present study, using the Cre/loxP system combined with an adeno-associated virus (AAV)-mediated delivery system, FAAH was selectively overexpressed in hippocampal CA1-CA3 glutamatergic neurons of adult mice. This approach led to specific FAAH overexpression at the postsynaptic site of CA1-CA3 neurons, to increased FAAH enzymatic activity, and, in consequence, to decreased hippocampal levels of AEA and palmitoylethanolamide (PEA), but the levels of the second major endocannabinoid 2-arachidonoyl glycerol (2-AG) and of oleoylethanolamide (OEA) were unchanged. Electrophysiological recordings revealed an enhancement of both excitatory and inhibitory synaptic activity and of long-term potentiation (LTP). In contrast, excitatory and inhibitory long-term depression (LTD) and short-term synaptic plasticity, apparent as depolarization-induced suppression of excitation (DSE) and inhibition (DSI), remained unaltered. These changes in hippocampal synaptic activity were associated with an increase in anxiety-like behavior, and a deficit in object recognition memory and in extinction of aversive memory. This study indicates that AEA is not involved in hippocampal short-term plasticity, or eLTD and iLTD, but modulates glutamatergic transmission most likely via presynaptic sites, and that disturbances in this process impair learning and emotional responses.


Asunto(s)
Ácidos Araquidónicos/fisiología , Emociones/fisiología , Endocannabinoides/fisiología , Etanolaminas/metabolismo , Ácido Glutámico/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Ácidos Palmíticos/metabolismo , Amidas , Amidohidrolasas/biosíntesis , Amidohidrolasas/genética , Animales , Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Memoria/fisiología , Ratones , Neuronas/fisiología , Ácidos Oléicos , Alcamidas Poliinsaturadas/metabolismo , Transmisión Sináptica/fisiología , Regulación hacia Arriba
12.
Stem Cell Reports ; 7(4): 693-706, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27693427

RESUMEN

Huntington's disease (HD) is characterized by fatal motoric failures induced by loss of striatal medium spiny neurons. Neuronal cell death has been linked to impaired expression and axonal transport of the neurotrophin BDNF (brain-derived neurotrophic factor). By transplanting embryonic stem cell-derived neural progenitors overexpressing BDNF, we combined cell replacement and BDNF supply as a potential HD therapy approach. Transplantation of purified neural progenitors was analyzed in a quinolinic acid (QA) chemical and two genetic HD mouse models (R6/2 and N171-82Q) on the basis of distinct behavioral parameters, including CatWalk gait analysis. Explicit rescue of motor function by BDNF neural progenitors was found in QA-lesioned mice, whereas genetic mouse models displayed only minor improvements. Tumor formation was absent, and regeneration was attributed to enhanced neuronal and striatal differentiation. In addition, adult neurogenesis was preserved in a BDNF-dependent manner. Our findings provide significant insight for establishing therapeutic strategies for HD to ameliorate neurodegenerative symptoms.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Diferenciación Celular , Células Madre Embrionarias/citología , Expresión Génica , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Biomarcadores , Supervivencia Celular , Cuerpo Estriado , Modelos Animales de Enfermedad , Células Madre Embrionarias/metabolismo , Genes Reporteros , Locomoción , Ratones , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Trasplante de Células Madre
13.
Stem Cell Res Ther ; 7: 11, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26762640

RESUMEN

BACKGROUND: Neural stem cells for the treatment of spinal cord injury (SCI) are of particular interest for future therapeutic use. However, until now, stem cell therapies are often limited due to the inhibitory environment following the injury. Therefore, in this study, we aimed at testing a combinatorial approach with BDNF (brain-derived neurotrophic factor) overexpressing early neural progenitors derived from mouse embryonic stem cells. BDNF is a neurotrophin, which both facilitates neural differentiation of stem cells and favors regeneration of damaged axons. METHODS: Mouse embryonic stem cells, modified to stably express BDNF-GFP, were differentiated into PSA-NCAM positive progenitors, which were enriched, and SSEA1 depleted by a sequential procedure of magnetic-activated and fluorescence-activated cell sorting. Purified cells were injected into the lesion core seven days after contusion injury of the spinal cord in mice, and the Basso mouse scale (BMS) test to evaluate motor function was performed for 5 weeks after transplantation. To analyze axonal regeneration the anterograde tracer biotinylated dextran amine was injected into the sensorimotor cortex two weeks prior to tissue analysis. Cellular differentiation was analyzed by immunohistochemistry of spinal cord sections. RESULTS: Motor function was significantly improved in animals obtaining transplanted BDNF-GFP-overexpressing cells as compared to GFP-expressing cells and vehicle controls. Stem cell differentiation in vivo revealed an increase of neuronal and oligodendrocytic lineage differentiation by BDNF as evaluated by immunohistochemistry of the neuronal marker MAP2 (microtubule associated protein 2) and the oligodendrocytic markers ASPA (aspartoacylase) and Olig2 (oligodendrocyte transcription factor 2). Furthermore, axonal tracing showed a significant increase of biotin dextran amine positive corticospinal tract fibers in BDNF-GFP-cell transplanted animals caudally to the lesion site. CONCLUSIONS: The combinatorial therapy approach by transplanting BDNF-overexpressing neural progenitors improved motor function in a mouse contusion model of SCI. Histologically, we observed enhanced neuronal and oligodendrocytic differentiation of progenitors as well as enhanced axonal regeneration.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Células Madre Embrionarias de Ratones/fisiología , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Células-Madre Neurales/fisiología , Ácidos Siálicos/metabolismo , Traumatismos de la Médula Espinal/terapia , Animales , Axones/fisiología , Factor Neurotrófico Derivado del Encéfalo/genética , Diferenciación Celular , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/trasplante , Nocicepción , Recuperación de la Función , Médula Espinal/patología , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA