RESUMEN
RATIONALE: Genome editing by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is evolving rapidly. Recently, second-generation CRISPR/Cas9 activation systems based on nuclease inactive dead (d)Cas9 fused to transcriptional transactivation domains were developed for directing specific guide (g)RNAs to regulatory regions of any gene of interest, to enhance transcription. The application of dCas9 to activate cardiomyocyte transcription in targeted genomic loci in vivo has not been demonstrated so far. OBJECTIVE: We aimed to develop a mouse model for cardiomyocyte-specific, CRISPR-mediated transcriptional modulation, and to demonstrate its versatility by targeting Mef2d and Klf15 loci (2 well-characterized genes implicated in cardiac hypertrophy and homeostasis) for enhanced transcription. METHODS AND RESULTS: A mouse model expressing dCas9 with the VPR transcriptional transactivation domains under the control of the Myh (myosin heavy chain) 6 promoter was generated. These mice innocuously expressed dCas9 exclusively in cardiomyocytes. For initial proof-of-concept, we selected Mef2d, which when overexpressed, led to hypertrophy and heart failure, and Klf15, which is lowly expressed in the neonatal heart. The most effective gRNAs were first identified in fibroblast (C3H/10T1/2) and myoblast (C2C12) cell lines. Using an improved triple gRNA expression system (TRISPR [triple gRNA expression construct]), up to 3 different gRNAs were transduced simultaneously to identify optimal conditions for transcriptional activation. For in vivo delivery of the validated gRNA combinations, we employed systemic administration via adeno-associated virus serotype 9. On gRNA delivery targeting Mef2d expression, we recapitulated the anticipated cardiac hypertrophy phenotype. Using gRNA targeting Klf15, we could enhance its transcription significantly, although Klf15 is physiologically silenced at that time point. We further confirmed specific and robust dCas9VPR on-target effects. CONCLUSIONS: The developed mouse model permits enhancement of gene expression by using endogenous regulatory genomic elements. Proof-of-concept in 2 independent genomic loci suggests versatile applications in controlling transcription in cardiomyocytes of the postnatal heart.
Asunto(s)
Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Miocardio/metabolismo , Activación Transcripcional , Animales , Línea Celular , Dependovirus/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Genes Sintéticos , Vectores Genéticos/genética , Corazón/crecimiento & desarrollo , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción MEF2/biosíntesis , Factores de Transcripción MEF2/genética , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Regiones Promotoras Genéticas , Dominios Proteicos , ARN Polimerasa III/genética , ARN Guía de Kinetoplastida/genéticaRESUMEN
Acute heart failure (HF) and in particular, cardiogenic shock are associated with high morbidity and mortality. A therapeutic dilemma is that the use of positive inotropic agents, such as catecholamines or phosphodiesterase-inhibitors, is associated with increased mortality. Newer drugs, such as levosimendan or omecamtiv mecarbil, target sarcomeres to improve systolic function putatively without elevating intracellular Ca2+. Although meta-analyses of smaller trials suggested that levosimendan is associated with a better outcome than dobutamine, larger comparative trials failed to confirm this observation. For omecamtiv mecarbil, Phase II clinical trials suggest a favourable haemodynamic profile in patients with acute and chronic HF, and a Phase III morbidity/mortality trial in patients with chronic HF has recently begun. Here, we review the pathophysiological basis of systolic dysfunction in patients with HF and the mechanisms through which different inotropic agents improve cardiac function. Since adenosine triphosphate and reactive oxygen species production in mitochondria are intimately linked to the processes of excitation-contraction coupling, we also discuss the impact of inotropic agents on mitochondrial bioenergetics and redox regulation. Therefore, this position paper should help identify novel targets for treatments that could not only safely improve systolic and diastolic function acutely, but potentially also myocardial structure and function over a longer-term.
Asunto(s)
Cardiotónicos/uso terapéutico , Acoplamiento Excitación-Contracción/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Choque Cardiogénico/tratamiento farmacológico , Enfermedad Aguda , Animales , Antioxidantes/efectos adversos , Antioxidantes/uso terapéutico , Calcio/metabolismo , Cardiotónicos/efectos adversos , Estudios de Casos y Controles , Catecolaminas/efectos adversos , Catecolaminas/uso terapéutico , Ensayos Clínicos como Asunto , Diástole/efectos de los fármacos , Dobutamina/efectos adversos , Dobutamina/uso terapéutico , Perros , Metabolismo Energético/efectos de los fármacos , Insuficiencia Cardíaca/mortalidad , Humanos , Mitocondrias/metabolismo , Modelos Animales , Contracción Miocárdica/efectos de los fármacos , Óxidos de Nitrógeno/efectos adversos , Óxidos de Nitrógeno/uso terapéutico , Oxidación-Reducción/efectos de los fármacos , Inhibidores de Fosfodiesterasa/efectos adversos , Inhibidores de Fosfodiesterasa/uso terapéutico , Placebos/administración & dosificación , Receptores Adrenérgicos/efectos de los fármacos , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , Choque Cardiogénico/mortalidad , Simendán/efectos adversos , Simendán/uso terapéutico , Porcinos , Sístole/efectos de los fármacos , Urea/efectos adversos , Urea/análogos & derivados , Urea/uso terapéuticoRESUMEN
The sympathetic nervous system is the main stimulator of cardiac function. While acute activation of the ß-adrenoceptors exerts positive inotropic and lusitropic effects by increasing cAMP and Ca2+, chronically enhanced sympathetic tone with changed ß-adrenergic signaling leads to alterations of gene expression and remodeling. The CREB-regulated transcription coactivator 1 (CRTC1) is activated by cAMP and Ca2+. In the present study, the regulation of CRTC1 in cardiomyocytes and its effect on cardiac function and growth was investigated. In cardiomyocytes, isoprenaline induced dephosphorylation, and thus activation of CRTC1, which was prevented by propranolol. Crtc1-deficient mice exhibited left ventricular dysfunction, hypertrophy and enlarged cardiomyocytes. However, isoprenaline-induced contractility of isolated trabeculae or phosphorylation of cardiac troponin I, cardiac myosin-binding protein C, phospholamban, and ryanodine receptor were not altered, suggesting that cardiac dysfunction was due to the global lack of Crtc1. The mRNA and protein levels of the Gαq GTPase activating protein regulator of G-protein signaling 2 (RGS2) were lower in hearts of Crtc1-deficient mice. Chromatin immunoprecipitation and reporter gene assays showed stimulation of the Rgs2 promoter by CRTC1. In Crtc1-deficient cardiomyocytes, phosphorylation of the Gαq-downstream kinase ERK was enhanced. CRTC1 content was higher in cardiac tissue from patients with aortic stenosis or hypertrophic cardiomyopathy and from two murine models mimicking these diseases. These data suggest that increased CRTC1 in maladaptive hypertrophy presents a compensatory mechanism to delay disease progression in part by enhancing Rgs2 gene transcription. Furthermore, the present study demonstrates an important role of CRTC1 in the regulation of cardiac function and growth.
Asunto(s)
Cardiomegalia/metabolismo , Factores de Transcripción/metabolismo , Animales , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/fisiopatología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Proteínas RGS/genética , Proteínas RGS/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal , Factores de Transcripción/deficienciaRESUMEN
The ability to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes (CMs) makes them an attractive source for repairing injured myocardium, disease modeling, and drug testing. Although current differentiation protocols yield hPSC-CMs to >90% efficiency, hPSC-CMs exhibit immature characteristics. With the goal of overcoming this limitation, we tested the effects of varying passive stretch on engineered heart muscle (EHM) structural and functional maturation, guided by computational modeling. Human embryonic stem cells (hESCs, H7 line) or human induced pluripotent stem cells (IMR-90 line) were differentiated to hPSC-derived cardiomyocytes (hPSC-CMs) in vitro using a small molecule based protocol. hPSC-CMs were characterized by troponin+ flow cytometry as well as electrophysiological measurements. Afterwards, 1.2 × 106 hPSC-CMs were mixed with 0.4 × 106 human fibroblasts (IMR-90 line) (3:1 ratio) and type-I collagen. The blend was cast into custom-made 12-mm long polydimethylsiloxane reservoirs to vary nominal passive stretch of EHMs to 5, 7, or 9 mm. EHM characteristics were monitored for up to 50 days, with EHMs having a passive stretch of 7 mm giving the most consistent formation. Based on our initial macroscopic observations of EHM formation, we created a computational model that predicts the stress distribution throughout EHMs, which is a function of cellular composition, cellular ratio, and geometry. Based on this predictive modeling, we show cell alignment by immunohistochemistry and coordinated calcium waves by calcium imaging. Furthermore, coordinated calcium waves and mechanical contractions were apparent throughout entire EHMs. The stiffness and active forces of hPSC-derived EHMs are comparable with rat neonatal cardiomyocyte-derived EHMs. Three-dimensional EHMs display increased expression of mature cardiomyocyte genes including sarcomeric protein troponin-T, calcium and potassium ion channels, ß-adrenergic receptors, and t-tubule protein caveolin-3. Passive stretch affects the structural and functional maturation of EHMs. Based on our predictive computational modeling, we show how to optimize cell alignment and calcium dynamics within EHMs. These findings provide a basis for the rational design of EHMs, which enables future scale-up productions for clinical use in cardiovascular tissue engineering. Stem Cells 2018;36:265-277.
Asunto(s)
Biología Computacional/métodos , Miocardio/citología , Línea Celular , Citometría de Flujo , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Ingeniería de Tejidos/métodosRESUMEN
Our current understanding of cardiac excitation and its coupling to contraction is largely based on ex vivo studies utilising fluorescent organic dyes to assess cardiac action potentials and signal transduction. Recent advances in optogenetic sensors open exciting new possibilities for cardiac research and allow us to answer research questions that cannot be addressed using the classic organic dyes. Especially thrilling is the possibility to use optogenetic sensors to record parameters of cardiac excitation and contraction in vivo. In addition, optogenetics provide a high spatial resolution, as sensors can be coupled to motifs and targeted to specific cell types and subcellular domains of the heart. In this review, we will give a comprehensive overview of relevant optogenetic sensors, how they can be utilised in cardiac research and how they have been applied in cardiac research up to now.
Asunto(s)
Investigación Biomédica/métodos , Técnicas Biosensibles , Señalización del Calcio , Cardiología/métodos , Corazón/fisiología , Canales Iónicos/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Optogenética , Potenciales de Acción , Animales , Acoplamiento Excitación-Contracción , Humanos , Transporte IónicoRESUMEN
RATIONALE: Tissue engineering approaches may improve survival and functional benefits from human embryonic stem cell-derived cardiomyocyte transplantation, thereby potentially preventing dilative remodeling and progression to heart failure. OBJECTIVE: Assessment of transport stability, long-term survival, structural organization, functional benefits, and teratoma risk of engineered heart muscle (EHM) in a chronic myocardial infarction model. METHODS AND RESULTS: We constructed EHMs from human embryonic stem cell-derived cardiomyocytes and released them for transatlantic shipping following predefined quality control criteria. Two days of shipment did not lead to adverse effects on cell viability or contractile performance of EHMs (n=3, P=0.83, P=0.87). One month after ischemia/reperfusion injury, EHMs were implanted onto immunocompromised rat hearts to simulate chronic ischemia. Bioluminescence imaging showed stable engraftment with no significant cell loss between week 2 and 12 (n=6, P=0.67), preserving ≤25% of the transplanted cells. Despite high engraftment rates and attenuated disease progression (change in ejection fraction for EHMs, -6.7±1.4% versus control, -10.9±1.5%; n>12; P=0.05), we observed no difference between EHMs containing viable and nonviable human cardiomyocytes in this chronic xenotransplantation model (n>12; P=0.41). Grafted cardiomyocytes showed enhanced sarcomere alignment and increased connexin 43 expression at 220 days after transplantation. No teratomas or tumors were found in any of the animals (n=14) used for long-term monitoring. CONCLUSIONS: EHM transplantation led to high engraftment rates, long-term survival, and progressive maturation of human cardiomyocytes. However, cell engraftment was not correlated with functional improvements in this chronic myocardial infarction model. Most importantly, the safety of this approach was demonstrated by the lack of tumor or teratoma formation.
Asunto(s)
Células Madre Embrionarias/trasplante , Supervivencia de Injerto , Trasplante de Corazón/métodos , Infarto del Miocardio/cirugía , Miocitos Cardíacos/trasplante , Músculos Papilares/trasplante , Ingeniería de Tejidos/métodos , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , Supervivencia Celular , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Células Madre Embrionarias/inmunología , Células Madre Embrionarias/metabolismo , Trasplante de Corazón/efectos adversos , Xenoinjertos , Humanos , Inmunosupresores/farmacología , Masculino , Contracción Miocárdica , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Músculos Papilares/inmunología , Músculos Papilares/metabolismo , Músculos Papilares/patología , Músculos Papilares/fisiopatología , Ratas Desnudas , Ratas Sprague-Dawley , Volumen Sistólico , Factores de Tiempo , TransfecciónRESUMEN
Restoring expression levels of the EF-hand calcium (Ca(2+)) sensor protein S100A1 has emerged as a key factor in reconstituting normal Ca(2+) handling in failing myocardium. Improved sarcoplasmic reticulum (SR) function with enhanced Ca(2+) resequestration appears critical for S100A1's cyclic adenosine monophosphate-independent inotropic effects but raises concerns about potential diastolic SR Ca(2+) leakage that might trigger fatal arrhythmias. This study shows for the first time a diminished interaction between S100A1 and ryanodine receptors (RyR2s) in experimental HF. Restoring this link in failing cardiomyocytes, engineered heart tissue and mouse hearts, respectively, by means of adenoviral and adeno-associated viral S100A1 cDNA delivery normalizes diastolic RyR2 function and protects against Ca(2+)- and ß-adrenergic receptor-triggered proarrhythmogenic SR Ca(2+) leakage in vitro and in vivo. S100A1 inhibits diastolic SR Ca(2+) leakage despite aberrant RyR2 phosphorylation via protein kinase A and calmodulin-dependent kinase II and stoichiometry with accessory modulators such as calmodulin, FKBP12.6 or sorcin. Our findings demonstrate that S100A1 is a regulator of diastolic RyR2 activity and beneficially modulates diastolic RyR2 dysfunction. S100A1 interaction with the RyR2 is sufficient to protect against basal and catecholamine-triggered arrhythmic SR Ca(2+) leak in HF, combining antiarrhythmic potency with chronic inotropic actions.
Asunto(s)
Insuficiencia Cardíaca/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Proteínas S100/metabolismo , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calmodulina/metabolismo , ADN Complementario/metabolismo , Electrocardiografía , Técnicas de Transferencia de Gen , Insuficiencia Cardíaca/prevención & control , Masculino , Ratones , Microscopía Fluorescente , Miocardio/metabolismo , Miocitos Cardíacos/citología , Fosforilación , Unión Proteica , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Ingeniería de Tejidos/métodosRESUMEN
BACKGROUND/AIMS: The hypoxia inducible factor-1 (HIF-1) is a suitable marker for tissue oxygenation. We intended to develop cardiomyocytes (CMs) expressing the oxygen-dependent degradation domain of HIF-1α fused to the firefly luciferase (ODD-Luc) followed by proof-of-concept for its applicability in the assessment of heart muscle oxygenation. METHODS AND RESULTS: We first generated embryonic stem cell (ESC) lines (ODD-Luc ESCs) from a Tg ROSA26 ODD-Luc/+ mouse. Subsequent CMs selection was facilitated by stable integration of an antibiotic resistance expressed under the control of the αMHC promoter. ODD-Luc ESCs showed a strong Luc-signal within 1 h of hypoxia (1% oxygen), which coincided with endogenous HIF-1α. Engineered heart muscle (EHM) constructed with ODD-Luc CMs confirmed the utility of the model to sense hypoxia, and monitor reoxygenation also in a multicellular heart muscle model. Pharmacologically induced inotropy/chronotropy under isoprenaline resulted in enhanced Luc-signal suggesting enhanced oxygen consumption, leading to notable myocardial hypoxia. CONCLUSIONS: ODD-Luc-CMs can be used to monitor dynamic changes of cardiomyocyte oxygenation in living heart muscle samples. We provide proof-of-concept for pharmacologically induced myocardial interventions and envision applications of the developed model in drug screens and fundamental studies of ischemia/reperfusion injury.
Asunto(s)
Ingeniería Genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Miocitos Cardíacos/metabolismo , Animales , RatonesRESUMEN
AIMS: Induced pluripotent stem cells (iPSCs) provide a unique opportunity for the generation of patient-specific cells for use in disease modelling, drug screening, and regenerative medicine. The aim of this study was to compare human-induced pluripotent stem cells (hiPSCs) derived from different somatic cell sources regarding their generation efficiency and cardiac differentiation potential, and functionalities of cardiomyocytes. METHODS AND RESULTS: We generated hiPSCs from hair keratinocytes, bone marrow mesenchymal stem cells (MSCs), and skin fibroblasts by using two different virus systems. We show that MSCs and fibroblasts are more easily reprogrammed than keratinocytes. This corresponds to higher methylation levels of minimal promoter regions of the OCT4 and NANOG genes in keratinocytes than in MSCs and fibroblasts. The success rate and reprogramming efficiency was significantly higher by using the STEMCCA system than the OSNL system. All analysed hiPSCs are pluripotent and show phenotypical characteristics similar to human embryonic stem cells. We studied the cardiac differentiation efficiency of generated hiPSC lines (n = 24) and found that MSC-derived hiPSCs exhibited a significantly higher efficiency to spontaneously differentiate into beating cardiomyocytes when compared with keratinocyte-, and fibroblast-derived hiPSCs. There was no significant difference in the functionalities of the cardiomyocytes derived from hiPSCs with different origins, showing the presence of pacemaker-, atrial-, ventricular- and Purkinje-like cardiomyocytes, and exhibiting rhythmic Ca2+ transients and Ca2+ sparks in hiPSC-derived cardiomyocytes. Furthermore, spontaneously and synchronously beating and force-developing engineered heart tissues were generated. CONCLUSIONS: Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell origins are similar. However, MSC-derived hiPSCs revealed a higher cardiac differentiation efficiency than keratinocyte- and fibroblast-derived hiPSCs.
Asunto(s)
Células de la Médula Ósea/citología , Fibroblastos/citología , Cabello/citología , Células Madre Pluripotentes Inducidas/citología , Queratinocitos/citología , Piel/citología , Potenciales de Acción/fisiología , Biomarcadores/metabolismo , Calcio/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Reprogramación Celular/fisiología , Metilación de ADN/fisiología , Epigénesis Genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo , Ingeniería de TejidosRESUMEN
The fluorescence ubiquitination cell cycle inhibitor (FUCCI) has been introduced to monitor cell cycle activity in living cells, including human induced pluripotent stem cells (hiPSC) and derived cell types. We have recently developed hiPSC with stable expression of dCas9VPR for endogenous gene activation and a Citrine-tagged ACTN2 cell line to monitor sarcomere development and function in muscle cells. Here, we present dual and triple transgenic hiPSC lines developed by genomic integration of FUCCI with and without dCas9VPR into the ROSA26 and AAVS1 loci, respectively, in the previously introduced ACTN2-Citrine line. Functionality of the transgenes was demonstrated in the novel hiPSC line, which we introduce as Myo-CCER and CraCCER.
Asunto(s)
Ciclo Celular , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Línea CelularRESUMEN
Evolutionary innovations can be driven by changes in the rates of RNA translation and the emergence of new genes and small open reading frames (sORFs). In this study, we characterized the transcriptional and translational landscape of the hearts of four primate and two rodent species through integrative ribosome and transcriptomic profiling, including adult left ventricle tissues and induced pluripotent stem cell-derived cardiomyocyte cell cultures. We show here that the translational efficiencies of subunits of the mitochondrial oxidative phosphorylation chain complexes IV and V evolved rapidly across mammalian evolution. Moreover, we discovered hundreds of species-specific and lineage-specific genomic innovations that emerged during primate evolution in the heart, including 551 genes, 504 sORFs and 76 evolutionarily conserved genes displaying human-specific cardiac-enriched expression. Overall, our work describes the evolutionary processes and mechanisms that have shaped cardiac transcription and translation in recent primate evolution and sheds light on how these can contribute to cardiac development and disease.
Asunto(s)
Evolución Molecular , Miocitos Cardíacos , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Animales , Humanos , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas/genética , Miocitos Cardíacos/metabolismo , Especificidad de la Especie , Transcriptoma , Perfilación de la Expresión Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Primates/genética , Células CultivadasRESUMEN
RATIONALE: An increase in cardiac afterload typically produces concentric hypertrophy characterized by an increase in cardiomyocyte width, whereas volume overload or exercise results in eccentric growth characterized by cellular elongation and addition of sarcomeres in series. The signaling pathways that control eccentric versus concentric heart growth are not well understood. OBJECTIVE: To determine the role of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in regulating the cardiac hypertrophic response. METHODS AND RESULTS: Here, we used mice lacking all ERK1/2 protein in the heart (Erk1(-/-) Erk2(fl/fl-Cre)) and mice expressing activated mitogen-activated protein kinase kinase (Mek)1 in the heart to induce ERK1/2 signaling, as well as mechanistic experiments in cultured myocytes to assess cellular growth characteristics associated with this signaling pathway. Although genetic deletion of all ERK1/2 from the mouse heart did not block the cardiac hypertrophic response per se, meaning that the heart still increased in weight with both aging and pathological stress stimulation, it did dramatically alter how the heart grew. For example, adult myocytes from hearts of Erk1(-/-) Erk2(fl/fl-Cre) mice showed preferential eccentric growth (lengthening), whereas myocytes from Mek1 transgenic hearts showed concentric growth (width increase). Isolated adult myocytes acutely inhibited for ERK1/2 signaling by adenoviral gene transfer showed spontaneous lengthening, whereas infection with an activated Mek1 adenovirus promoted constitutive ERK1/2 signaling and increased myocyte thickness. A similar effect was observed in engineered heart tissue under cyclic stretching, where ERK1/2 inhibition led to preferential lengthening. CONCLUSIONS: Taken together, these data demonstrate that the ERK1/2 signaling pathway uniquely regulates the balance between eccentric and concentric growth of the heart.
Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Células Cultivadas , Hipertrofia , MAP Quinasa Quinasa 1/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Modelos Animales , Fosforilación , Transducción de Señal/fisiologíaRESUMEN
Arrhythmogenic cardiomyopathy is a severe cardiac disorder characterized by lethal arrhythmias and sudden cardiac death, with currently no effective treatment. Plakophilin 2 (PKP2) is the most frequently affected gene. Here we show that adeno-associated virus (AAV)-mediated delivery of PKP2 in PKP2c.2013delC/WT induced pluripotent stem cell-derived cardiomyocytes restored not only cardiac PKP2 levels but also the levels of other junctional proteins, found to be decreased in response to the mutation. PKP2 restoration improved sodium conduction, indicating rescue of the arrhythmic substrate in PKP2 mutant induced pluripotent stem cell-derived cardiomyocytes. Additionally, it enhanced contractile function and normalized contraction kinetics in PKP2 mutant engineered human myocardium. Recovery of desmosomal integrity and cardiac function was corroborated in vivo, by treating heterozygous Pkp2c.1755delA knock-in mice. Long-term treatment with AAV9-PKP2 prevented cardiac dysfunction in 12-month-old Pkp2c.1755delA/WT mice, without affecting wild-type mice. These findings encourage clinical exploration of PKP2 gene therapy for patients with PKP2 haploinsufficiency.
RESUMEN
AIMS: Atrial fibrillation (AF) is associated with tachycardia-induced cellular electrophysiology alterations which promote AF chronification and treatment resistance. Development of novel antiarrhythmic therapies is hampered by the absence of scalable experimental human models that reflect AF-associated electrical remodelling. Therefore, we aimed to assess if AF-associated remodelling of cellular electrophysiology can be simulated in human atrial-like cardiomyocytes derived from induced pluripotent stem cells in the presence of retinoic acid (iPSC-aCM), and atrial-engineered human myocardium (aEHM) under short term (24 h) and chronic (7 days) tachypacing (TP). METHODS AND RESULTS: First, 24-h electrical pacing at 3 Hz was used to investigate whether AF-associated remodelling in iPSC-aCM and aEHM would ensue. Compared to controls (24 h, 1 Hz pacing) TP-stimulated iPSC-aCM presented classical hallmarks of AF-associated remodelling: (i) decreased L-type Ca2+ current (ICa,L) and (ii) impaired activation of acetylcholine-activated inward-rectifier K+ current (IK,ACh). This resulted in action potential shortening and an absent response to the M-receptor agonist carbachol in both iPSC-aCM and aEHM subjected to TP. Accordingly, mRNA expression of the channel-subunit Kir3.4 was reduced. Selective IK,ACh blockade with tertiapin reduced basal inward-rectifier K+ current only in iPSC-aCM subjected to TP, thereby unmasking an agonist-independent constitutively active IK,ACh. To allow for long-term TP, we developed iPSC-aCM and aEHM expressing the light-gated ion-channel f-Chrimson. The same hallmarks of AF-associated remodelling were observed after optical-TP. In addition, continuous TP (7 days) led to (i) increased amplitude of inward-rectifier K+ current (IK1), (ii) hyperpolarization of the resting membrane potential, (iii) increased action potential-amplitude and upstroke velocity as well as (iv) reversibly impaired contractile function in aEHM. CONCLUSIONS: Classical hallmarks of AF-associated remodelling were mimicked through TP of iPSC-aCM and aEHM. The use of the ultrafast f-Chrimson depolarizing ion channel allowed us to model the time-dependence of AF-associated remodelling in vitro for the first time. The observation of electrical remodelling with associated reversible contractile dysfunction offers a novel platform for human-centric discovery of antiarrhythmic therapies.
Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Atrios Cardíacos , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Potenciales de Acción , Acetilcolina/farmacologíaRESUMEN
BACKGROUND: Calcium (Ca2+) handling proteins are known to play a pivotal role in the pathophysiology of cardiomyopathy. However little is known about early changes in the diabetic heart and the impact of insulin treatment (Ins). METHODS: Zucker Diabetic Fatty rats treated with or without insulin (ZDF ± Ins, n = 13) and lean littermates (controls, n = 7) were sacrificed at the age of 19 weeks. ZDF + Ins (n = 6) were treated with insulin for the last 6 weeks of life. Gene expression of Ca2+ ATPase in the cardiac sarcoplasmatic reticulum (SERCA2a, further abbreviated as SERCA) and phospholamban (PLB) were determined by northern blotting. Ca2+ transport of the sarcoplasmatic reticulum (SR) was assessed by oxalate-facilitated 45Ca-uptake in left ventricular homogenates. In addition, isolated neonatal cardiomyocytes were stimulated in cell culture with insulin, glucose or triiodthyronine (T3, positive control). mRNA expression of SERCA and PLB were measured by Taqman PCR. Furthermore, effects of insulin treatment on force of contraction and relaxation were evaluated by cardiomyocytes grown in a three-dimensional collagen matrix (engineered heart tissue, EHT) stimulated for 5 days by insulin. By western blot phosphorylations status of Akt was determed and the influence of wortmannin. RESULTS: SERCA levels increased in both ZDF and ZDF + Ins compared to control (control 100 ± 6.2 vs. ZDF 152 ± 26.6* vs. ZDF + Ins 212 ± 18.5*# % of control, *p < 0.05 vs. control, #p < 0.05 vs. ZDF) whereas PLB was significantly decreased in ZDF and ZDF + Ins (control 100 ± 2.8 vs. ZDF 76.3 ± 13.5* vs. ZDF + Ins 79.4 ± 12.9* % of control, *p < 0.05 vs control). The increase in the SERCA/PLB ratio in ZDF and ZDF ± Ins was accompanied by enhanced Ca2+ uptake to the SR (control 1.58 ± 0.1 vs. ZDF 1.85 ± 0.06* vs. ZDF + Ins 2.03 ± 0.1* µg/mg/min, *p < 0.05 vs. control). Interestingly, there was a significant correlation between Ca2+ uptake and SERCA2a expression. As shown by in-vitro experiments, the effect of insulin on SERCA2a mRNA expression seemed to have a direct effect on cardiomyocytes. Furthermore, long-term treatment of engineered heart tissue with insulin increased the SERCA/PLB ratio and accelerated relaxation time. Akt was significantly phosphorylated by insulin. This effect could be abolished by wortmannin. CONCLUSION: The current data demonstrate that early type 2 diabetes is associated with an increase in the SERCA/PLB ratio and that insulin directly stimulates SERCA expression and relaxation velocity. These results underline the important role of insulin and calcium handling proteins in the cardiac adaptation process of type 2 diabetes mellitus contributing to cardiac remodeling and show the important role of PI3-kinase-Akt-SERCA2a signaling cascade.
Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Insulina/farmacología , Miocardio/enzimología , Miocitos Cardíacos/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Animales Recién Nacidos , Northern Blotting , Western Blotting , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/enzimología , Fosforilación , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-akt , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Ratas Zucker , Retículo Sarcoplasmático/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Factores de Tiempo , Regulación hacia ArribaRESUMEN
Transgenic (TG) Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) δ(C) mice develop systolic heart failure (HF). CaMKII regulates intracellular Ca(2+) handling proteins as well as sarcolemmal Na(+) channels. We hypothesized that CaMKII also contributes to diastolic dysfunction and arrhythmias via augmentation of the late Na(+) current (late I(Na)) in early HF (8-week-old TG mice). Echocardiography revealed severe diastolic dysfunction in addition to decreased systolic ejection fraction. Premature arrhythmogenic contractions (PACs) in isolated isometrically twitching papillary muscles only occurred in TG preparations (5 vs. 0, P < 0.05) which could be completely terminated when treated with the late I(Na) inhibitor ranolazine (Ran, 5 µmol/L). Force-frequency relationships revealed significantly reduced twitch force amplitudes in TG papillary muscles. Most importantly, diastolic tension increased with raising frequencies to a greater extent in TG papillary muscles compared to WT specimen (at 10 Hz: 3.7 ± 0.4 vs. 2.5 ± 0.3 mN/mm²; P < 0.05). Addition of Ran improved diastolic dysfunction to 2.1 ± 0.2 mN/mm² (at 10 Hz; P < 0.05) without negative inotropic effects. Mechanistically, the late I(Na) was markedly elevated in myocytes isolated from TG mice and could be completely reversed by Ran. In conclusion, our results show for the first time that TG CaMKIIδ(C) overexpression induces diastolic dysfunction and arrhythmogenic triggers possibly via an enhanced late I(Na). Inhibition of elevated late I(Na) had beneficial effects on arrhythmias as well as diastolic function in papillary muscles from CaMKIIδ(C) TG mice. Thus, late I(Na) inhibition appears to be a promising option for diastolic dysfunction and arrhythmias in HF where CaMKII is found to be increased.
Asunto(s)
Arritmias Cardíacas/enzimología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Insuficiencia Cardíaca Diastólica/enzimología , Sodio/metabolismo , Animales , Calcio/metabolismo , Insuficiencia Cardíaca Diastólica/patología , Insuficiencia Cardíaca Diastólica/fisiopatología , Ratones , Ratones Transgénicos , Contracción Miocárdica , Miocardio/patología , Músculos Papilares/fisiopatología , Fenotipo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismoRESUMEN
Heterozygous truncating variants in TTN (TTNtv), the gene coding for titin, cause dilated cardiomyopathy (DCM), but the underlying pathomechanisms are unclear and disease management remains uncertain. Truncated titin proteins have not yet been considered as a contributor to disease development. Here, we studied myocardial tissues from nonfailing donor hearts and 113 patients with end-stage DCM for titin expression and identified a TTNtv in 22 patients with DCM (19.5%). We directly demonstrate titin haploinsufficiency in TTNtv-DCM hearts and the absence of compensatory changes in the alternative titin isoform Cronos. Twenty-one TTNtv-DCM hearts in our cohort showed stable expression of truncated titin proteins. Expression was variable, up to half of the total titin protein pool, and negatively correlated with patient age at heart transplantation. Truncated titin proteins were not detected in sarcomeres but were present in intracellular aggregates, with deregulated ubiquitin-dependent protein quality control. We produced human induced pluripotent stem cellderived cardiomyocytes (hiPSC-CMs), comparing wild-type controls to cells with a patient-derived, prototypical A-band-TTNtv or a CRISPR-Cas9generated M-band-TTNtv. TTNtv-hiPSC-CMs showed reduced wild-type titin expression and contained truncated titin proteins whose proportion increased upon inhibition of proteasomal activity. In engineered heart muscle generated from hiPSC-CMs, depressed contractility caused by TTNtv could be reversed by correction of the mutation using CRISPR-Cas9, eliminating truncated titin proteins and raising wild-type titin content. Functional improvement also occurred when wild-type titin protein content was increased by proteasome inhibition. Our findings reveal the major pathomechanisms of TTNtv-DCM and can be exploited for new therapies to treat TTNtv-related cardiomyopathies.
Asunto(s)
Cardiomiopatías , Conectina , Trasplante de Corazón , Células Madre Pluripotentes Inducidas , Cardiomiopatías/genética , Conectina/genética , Conectina/metabolismo , Haploinsuficiencia , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Donantes de TejidosRESUMEN
Platelet-derived-growth-factor-BB (PDGF-BB) can protect various cell types from apoptotic cell death, and induce hypertrophic growth and proliferation, but little is known about its direct or indirect effects on cardiomyocytes. Cardiac muscle engineering is compromised by a particularly high rate of cardiomyocyte death. Here we hypothesized that PDGF-BB stimulation can (1) protect cardiomyocytes from apoptosis, (2) enhance myocyte content in and (3) consequently optimize contractile performance of engineered heart tissue (EHT). We investigated the effects of PDGF-receptor activation in neonatal rat heart monolayer- and EHT-cultures by isometric contraction experiments, cytomorphometry, (3)H-thymidine and (3)H-phenylalanine incorporation assays, quantitative PCR (calsequestrin 2, alpha-cardiac and skeletal actin, atrial natriuretic factor, alpha- and beta-myosin heavy chain), immunoblotting (activated caspase 3, Akt-phosphorylation), and ELISA (cell death detection). PDGF-BB did not induce hypertrophy or proliferation in cardiomyocytes, but enhanced contractile performance of EHT. This effect was concentration-dependent (E(max) 10 ng/ml) and maximal only after transient PDGF-BB stimulation (culture days 0-7; total culture duration: 12 days). Improvement of contractile function was associated with higher cardiomyocyte content, as a consequence of PDGF-BB mediated protection from apoptosis (lower caspase-3 activity particularly in cardiomyocytes in PDGF-BB treated vs. untreated EHTs). We confirmed the anti-apoptotic effect of PDGF-BB in monolayer cultures and observed that PI3-kinase inhibition with LY294002 attenuated PDGF-BB-mediated cardiomyocyte protection. We conclude that PDGF-BB does not induce hypertrophy or proliferation, but confers an anti-apoptotic effect on cardiomyocytes. Our findings suggest a further exploitation of PDGF-BB in cardiomyocyte protection in vivo and in vitro.
Asunto(s)
Apoptosis , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Animales Recién Nacidos , Becaplermina , Proliferación Celular , Cromonas/farmacología , Inhibidores Enzimáticos/farmacología , Corazón/fisiología , Morfolinas/farmacología , Fenilalanina/química , Proteínas Proto-Oncogénicas c-sis , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ingeniería de Tejidos/métodosRESUMEN
BACKGROUND: Mesenchymal stem cell (MSC)-based regenerative strategies were investigated to treat acute myocardial infarction and improve left ventricular function. METHODS AND RESULTS: Murine AMI was induced by coronary ligation with subsequent injection of MSCs, hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), or MSCs +HGF/VEGF into the border zone. Left ventricular ejection fraction was calculated using micro-computed tomography imaging after 6 months. HGF and VEGF protein injection (with or without concomitant MSC injection) significantly and similarly improved the left ventricular ejection fraction and reduced scar size compared with the MSC group, suggesting that myocardial recovery was due to the cytokines rather than myocardial regeneration. To provide sustained paracrine effects, HGF or VEGF overexpressing MSCs were generated (MSC-HGF, MSC-VEGF). MSC-HGF and MSC-VEGF showed significantly increased in vitro proliferation and increased in vivo proliferation within the border zone. Cytokine production correlated with MSC survival. MSC-HGF- and MSC-VEGF-treated animals showed smaller scar sizes, increased peri-infarct vessel densities, and better preserved left ventricular function when compared with MSCs transfected with empty vector. Murine cardiomyocytes were exposed to hypoxic in vitro conditions. The LDH release was reduced, fewer cardiomyocytes were apoptotic, and Akt activity was increased if cardiomyocytes were maintained in conditioned medium obtained from MSC-HGF or MSC-VEGF cultures. CONCLUSIONS: This study showed that (1) elevating the tissue levels of HGF and VEGF after acute myocardial infarction seems to be a promising reparative therapeutic approach, (2) HGF and VEGF are cardioprotective by increasing the tolerance of cardiomyocytes to ischemia, reducing cardiomyocyte apoptosis and increasing prosurvival Akt activation, and (3) MSC-HGF and MSC-VEGF are a valuable source for increased cytokine production and maximize the beneficial effect of MSC-based repair strategies.
Asunto(s)
Factor de Crecimiento de Hepatocito/genética , Trasplante de Células Madre Mesenquimatosas , Infarto del Miocardio/terapia , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Citocinas/biosíntesis , Transferencia de Gen Horizontal , Terapia Genética , Ratones , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-akt/fisiología , Función Ventricular IzquierdaRESUMEN
Titins, giant sarcomere proteins with major mechanical/signaling functions, are expressed in 2 main isoform classes in the mammalian heart: N2B (3000 kDa) and N2BA (>3200 kDa). A dramatic isoform switch occurs during cardiac development, from fetal N2BA titin (3700 kDa) expressed before birth to a mix of smaller N2BA/N2B isoforms found postnatally; adult rat hearts almost exclusively have N2B titin. The isoform switch, which can be reversed in chronic human heart failure, alters myocardial distensibility and mechanosignaling. Here we determined factors regulating this switch using, as a model system, primary cardiomyocyte cultures prepared from embryonic rats. In standard culture, the mean N2B percentage initially was 14% and increased by approximately 60% within 1 week, resembling the in vivo switching. The titin isoform transition was independent of endothelin-1-induced myocyte hypertrophy and was not altered by pacing, contractile arrest, or cell stretch; however, it was modestly impaired by decreasing substrate rigidity and strongly dependent on serum components. Angiotensin II significantly promoted the transition. The mean N2B proportion in 1-week-old cultures dropped 20% to 25% in hormone-reduced medium, but addition of 3,5,3'-triiodo-l-thyronine (T3) nearly restored the proportion to that found in standard culture. This T3 effect was not prevented by bisphenol A, a specific inhibitor of the classic genomic pathway of T3 action. In contrast, the titin switch could be stalled by the phosphatidylinositol 3-kinase inhibitor LY294002, which decreased the proportion of N2B mRNA transcripts within hours and suppressed a rapid T3-induced increase in Akt phosphorylation. Also, angiotensin II, but not endothelin-1 or cell stretch, enhanced Akt phosphorylation. Thus, although matrix stiffness modulates developmental titin isoform transitions, these transitions are mainly regulated through phosphatidylinositol 3-kinase/Akt-dependent signaling triggered particularly by T3 via a rapid action pathway.