Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Bioessays ; 45(10): e2300075, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37530178

RESUMEN

Over the past decade, research has revealed biomolecular condensates' relevance in diverse cellular functions. Through a phase separation process, they concentrate macromolecules in subcompartments shaping the cellular organization and physiology. In the nucleus, biomolecular condensates assemble relevant biomolecules that orchestrate gene expression. We here hypothesize that chromatin condensates can also modulate the nongenetic functions of the genome, including the nuclear mechanical properties. The importance of chromatin condensates is supported by the genetic evidence indicating that mutations in their members are causative of a group of rare Mendelian diseases named chromatinopathies (CPs). Despite a broad spectrum of clinical features and the perturbations of the epigenetic machinery characterizing the CPs, recent findings highlighted negligible changes in gene expression. These data argue in favor of possible noncanonical functions of chromatin condensates in regulating the genome's spatial organization and, consequently, the nuclear mechanics. In this review, we discuss how condensates may impact nuclear mechanical properties, thus affecting the cellular response to mechanical cues and, eventually, cell fate and identity. Chromatin condensates organize macromolecules in the nucleus orchestrating the transcription regulation and mutations in their members are responsible for rare diseases named chromatinopathies. We argue that chromatin condensates, in concert with the nuclear lamina, may also govern the nuclear mechanical properties affecting the cellular response to external cues.


Asunto(s)
Núcleo Celular , Cromatina , Cromatina/genética , Cromatina/metabolismo , Núcleo Celular/genética , Mutación
2.
Cell ; 138(6): 1122-36, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19766566

RESUMEN

The phosphorylation of the serine 10 at histone H3 has been shown to be important for transcriptional activation. Here, we report the molecular mechanism through which H3S10ph triggers transcript elongation of the FOSL1 gene. Serum stimulation induces the PIM1 kinase to phosphorylate the preacetylated histone H3 at the FOSL1 enhancer. The adaptor protein 14-3-3 binds the phosphorylated nucleosome and recruits the histone acetyltransferase MOF, which triggers the acetylation of histone H4 at lysine 16 (H4K16ac). This histone crosstalk generates the nucleosomal recognition code composed of H3K9acS10ph/H4K16ac determining a nucleosome platform for the bromodomain protein BRD4 binding. The recruitment of the positive transcription elongation factor b (P-TEFb) via BRD4 induces the release of the promoter-proximal paused RNA polymerase II and the increase of its processivity. Thus, the single phosphorylation H3S10ph at the FOSL1 enhancer triggers a cascade of events which activate transcriptional elongation.


Asunto(s)
Código de Histonas , Histonas/metabolismo , Transcripción Genética , Animales , Línea Celular , Quinasa 9 Dependiente de la Ciclina/metabolismo , Drosophila , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones , Nucleosomas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Transcripción/metabolismo , Levaduras
3.
Gut ; 71(1): 119-128, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436496

RESUMEN

OBJECTIVE: Cancer stem cells are responsible for tumour spreading and relapse. Human epidermal growth factor receptor 2 (HER2) expression is a negative prognostic factor in colorectal cancer (CRC) and a potential target in tumours carrying the gene amplification. Our aim was to define the expression of HER2 in colorectal cancer stem cells (CR-CSCs) and its possible role as therapeutic target in CRC resistant to anti- epidermal growth factor receptor (EGFR) therapy. DESIGN: A collection of primary sphere cell cultures obtained from 60 CRC specimens was used to generate CR-CSC mouse avatars to preclinically validate therapeutic options. We also made use of the ChIP-seq analysis for transcriptional evaluation of HER2 activation and global RNA-seq to identify the mechanisms underlying therapy resistance. RESULTS: Here we show that in CD44v6-positive CR-CSCs, high HER2 expression levels are associated with an activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which promotes the acetylation at the regulatory elements of the Erbb2 gene. HER2 targeting in combination with phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase kinase (MEK) inhibitors induces CR-CSC death and regression of tumour xenografts, including those carrying Kras and Pik3ca mutation. Requirement for the triple targeting is due to the presence of cancer-associated fibroblasts, which release cytokines able to confer CR-CSC resistance to PI3K/AKT inhibitors. In contrast, targeting of PI3K/AKT as monotherapy is sufficient to kill liver-disseminating CR-CSCs in a model of adjuvant therapy. CONCLUSIONS: While PI3K targeting kills liver-colonising CR-CSCs, the concomitant inhibition of PI3K, HER2 and MEK is required to induce regression of tumours resistant to anti-EGFR therapies. These data may provide a rationale for designing clinical trials in the adjuvant and metastatic setting.


Asunto(s)
Neoplasias Colorrectales/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Receptor ErbB-2/metabolismo , Animales , Antineoplásicos Inmunológicos/farmacología , Cetuximab/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Trastuzumab/farmacología , Células Tumorales Cultivadas
4.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613611

RESUMEN

Haploinsufficiency of the SETD5 gene, encoding a SET domain-containing histone methyltransferase, has been identified as a cause of intellectual disability and Autism Spectrum Disorder (ASD). Recently, the zebrafish has emerged as a valuable model to study neurodevelopmental disorders because of its genetic tractability, robust behavioral traits and amenability to high-throughput drug screening. To model human SETD5 haploinsufficiency, we generated zebrafish setd5 mutants using the CRISPR/Cas9 technology and characterized their morphological, behavioral and molecular phenotypes. According to our observation that setd5 is expressed in adult zebrafish brain, including those areas controlling social behavior, we found that setd5 heterozygous mutants exhibit defective aggregation and coordination abilities required for shoaling interactions, as well as indifference to social stimuli. Interestingly, impairment in social interest is rescued by risperidone, an antipsychotic drug used to treat behavioral traits in ASD individuals. The molecular analysis underscored the downregulation of genes encoding proteins involved in the synaptic structure and function in the adult brain, thus suggesting that brain hypo-connectivity could be responsible for the social impairments of setd5 mutant fishes. The zebrafish setd5 mutants display ASD-like features and are a promising setd5 haploinsufficiency model for drug screening aimed at reversing the behavioral phenotypes.


Asunto(s)
Trastorno del Espectro Autista , Metiltransferasas , Animales , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Metiltransferasas/genética , Metiltransferasas/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Conducta Social
5.
Cell Mol Life Sci ; 75(14): 2537-2555, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29691590

RESUMEN

Cancer heterogeneity arises during tumor progression as a consequence of genetic insults, environmental cues, and reversible changes in the epigenetic state, favoring tumor cell plasticity. The role of enhancer reprogramming is emerging as a relevant field in cancer biology as it supports adaptation of cancer cells to those environmental changes encountered during tumor progression and metastasis seeding. In this review, we describe the cancer-related alterations that drive oncogenic enhancer activity, leading to dysregulated transcriptional programs. We discuss the molecular mechanisms of both cis- and trans-factors in overriding the regulatory circuits that maintain cell-type specificity and imposing an alternative, de-regulated enhancer activity in cancer cells. We further comment on the increasing evidence which implicates stress response and aging-signaling pathways in the enhancer landscape reprogramming during tumorigenesis. Finally, we focus on the potential therapeutic implications of these enhancer-mediated subverted transcriptional programs, putting particular emphasis on the lack of information regarding tumor progression and the metastatic outgrowth, which still remain the major cause of mortality related to cancer.


Asunto(s)
Transformación Celular Neoplásica/genética , Reprogramación Celular/genética , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Animales , Plasticidad de la Célula/genética , Progresión de la Enfermedad , Humanos , Neoplasias/patología , Transducción de Señal/genética
6.
Nat Cell Biol ; 9(8): 932-44, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17643117

RESUMEN

The serine/threonine kinase human Pim1 (hereafter PIM1) cooperates with human c-Myc (hereafter MYC) in cell cycle progression and tumorigenesis. However, the nature of this cooperation is still unknown. Here we show that, after stimulation with growth factor, PIM1 forms a complex with the dimer of MYC with MAX (Myc-associated factor X) via the MYC BoxII (MBII) domain. MYC recruits PIM1 to the E boxes of the MYC-target genes FOSL1 (FRA-1) and ID2, and PIM1 phosphorylates serine 10 of histone H3 (H3S10) on the nucleosome at the MYC-binding sites, contributing to their transcriptional activation. MYC and PIM1 colocalize at sites of active transcription, and expression profile analysis revealed that PIM1 contributes to the regulation of 20% of the MYC-regulated genes. Moreover, PIM1-dependent H3S10 phosphorylation contributes to MYC transforming capacity. These results establish a new function for PIM1 as a MYC cofactor that phosphorylates the chromatin at MYC-target loci and suggest that nucleosome phosphorylation, at E boxes, contributes to MYC-dependent transcriptional activation and cellular transformation.


Asunto(s)
Transformación Celular Neoplásica , Histonas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Serina/metabolismo , Activación Transcripcional , Células Cultivadas , Cromatina/metabolismo , Células Endoteliales/citología , Células Endoteliales/fisiología , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Histonas/genética , Humanos , Complejos Multiproteicos , Nucleosomas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-pim-1/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Nat Commun ; 15(1): 2198, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503727

RESUMEN

Metastasis arises from disseminated tumour cells (DTCs) that are characterized by intrinsic phenotypic plasticity and the capability of seeding to secondary organs. DTCs can remain latent for years before giving rise to symptomatic overt metastasis. In this context, DTCs fluctuate between a quiescent and proliferative state in response to systemic and microenvironmental signals including immune-mediated surveillance. Despite its relevance, how intrinsic mechanisms sustain DTCs plasticity has not been addressed. By interrogating the epigenetic state of metastatic cells, we find that tumour progression is coupled with the activation of oncogenic enhancers that are organized in variable interconnected chromatin domains. This spatial chromatin context leads to the activation of a robust transcriptional response upon repeated exposure to retinoic acid (RA). We show that this adaptive mechanism sustains the quiescence of DTCs through the activation of the master regulator SOX9. Finally, we determine that RA-stimulated transcriptional memory increases the fitness of metastatic cells by supporting the escape of quiescent DTCs from NK-mediated immune surveillance. Overall, these findings highlight the contribution of oncogenic enhancers in establishing transcriptional memories as an adaptive mechanism to reinforce cancer dormancy and immune escape, thus amenable for therapeutic intervention.


Asunto(s)
Vigilancia Inmunológica , Secuencias Reguladoras de Ácidos Nucleicos , División Celular , Línea Celular Tumoral , Cromatina
8.
Methods Mol Biol ; 2655: 183-200, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37212997

RESUMEN

The polycomb group (PcG) proteins play a central role in the maintenance of a repressive state of gene expression. Recent findings demonstrate that PcG components are organized into nuclear condensates, contributing to the reshaping of chromatin architecture in physiological and pathological conditions, thus affecting the nuclear mechanics. In this context, direct stochastic optical reconstruction microscopy (dSTORM) provides an effective tool to achieve a detailed characterization of PcG condensates by visualizing them at a nanometric level. Furthermore, by analyzing dSTORM datasets with cluster analysis algorithms, quantitative information can be yielded regarding protein numbers, grouping, and spatial organization. Here, we describe how to set up a dSTORM experiment and perform the data analysis to study PcG complexes' components in adhesion cells quantitatively.


Asunto(s)
Cromatina , Microscopía , Proteínas del Grupo Polycomb/genética , Cromatina/genética , Cromatina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo
9.
Mol Autism ; 14(1): 20, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264456

RESUMEN

BACKGROUND: Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population. METHODS: We investigated in vitro neural stem cells as well as the brain of the Setd5 haploinsufficiency mouse model interrogating its transcriptome, analyzing mitochondrial structure, biochemical composition, and dynamics, as well as mitochondrial functionality. RESULTS: Mitochondrial impairment is facilitated by transcriptional aberrations originated by the decrease of the SETD5 enzyme. Low levels of SETD5 resulted in fragmented mitochondria, reduced mitochondrial membrane potential, and ATP production both in neural precursors and neurons. Mitochondria were also mislocalized in mutant neurons, with reduced organelles within neurites and synapses. LIMITATIONS: We found several defects in the mitochondrial compartment; however, we can only speculate about their position in the hierarchy of the pathological mechanisms at the basis of the disease. CONCLUSIONS: Our study explores the interplay between chromatin regulation and mitochondria functions as a possible important aspect of SETD5-associated NDD pathophysiology. Our data, if confirmed in patient context, suggest that the mitochondrial activity and dynamics may represent new therapeutic targets for disorders associated with the loss of SETD5.


Asunto(s)
Haploinsuficiencia , Células-Madre Neurales , Ratones , Animales , Humanos , Neuronas/metabolismo , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Cromatina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
10.
Cancer Res ; 83(2): 195-218, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36409826

RESUMEN

Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared with proneural GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core-fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using preclinical minimally invasive PET, implicating this metabolite as a potential subgroup-restricted biomarker.Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets. SIGNIFICANCE: Metabolic characterization of subgroup-specific glioblastoma (GBM) sphere-forming cells identifies the L-fucose pathway as a vulnerability restricted to mesenchymal GBM, disclosing a potential precision medicine strategy for targeting cancer metabolism.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Fucosa/metabolismo , Transducción de Señal , Neoplasias Encefálicas/patología , Células Madre Neoplásicas/patología , Línea Celular Tumoral
11.
Lab Chip ; 22(18): 3453-3463, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35946995

RESUMEN

Single-cell imaging and sorting are critical technologies in biology and clinical applications. The power of these technologies is increased when combined with microfluidics, fluorescence markers, and machine learning. However, this quest faces several challenges. One of these is the effect of the sample flow velocity on the classification performances. Indeed, cell flow speed affects the quality of image acquisition by increasing motion blur and decreasing the number of acquired frames per sample. We investigate how these visual distortions impact the final classification task in a real-world use-case of cancer cell screening, using a microfluidic platform in combination with light sheet fluorescence microscopy. We demonstrate, by analyzing both simulated and experimental data, that it is possible to achieve high flow speed and high accuracy in single-cell classification. We prove that it is possible to overcome the 3D slice variability of the acquired 3D volumes, by relying on their 2D sum z-projection transformation, to reach an efficient real time classification with an accuracy of 99.4% using a convolutional neural network with transfer learning from simulated data. Beyond this specific use-case, we provide a web platform to generate a synthetic dataset and to investigate the effect of flow speed on cell classification for any biological samples and a large variety of fluorescence microscopes (https://www.creatis.insa-lyon.fr/site7/en/MicroVIP).


Asunto(s)
Algoritmos , Microfluídica , Aprendizaje Automático , Microscopía Fluorescente , Redes Neurales de la Computación
12.
Oncogene ; 41(15): 2196-2209, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217791

RESUMEN

Breast cancer (BC) is the second cause of cancer-related deceases in the worldwide female population. Despite the successful treatment advances, 25% of BC develops resistance to current therapeutic regimens, thereby remaining a major hurdle for patient management. Current therapies, targeting the molecular events underpinning the adaptive resistance, still require effort to improve BC treatment. Using BC sphere cells (BCSphCs) as a model, here we showed that BC stem-like cells express high levels of Myc, which requires the presence of the multifunctional DNA/RNA binding protein Sam68 for the DNA-damage repair. Analysis of a cohort of BC patients displayed that Sam68 is an independent negative factor correlated with the progression of the disease. Genetic inhibition of Sam68 caused a defect in PARP-induced PAR chain synthesis upon DNA-damaging insults, resulting in cell death of TNBC cells. In contrast, BC stem-like cells were able to survive due to an upregulation of Rad51. Importantly, the inhibition of Rad51 showed synthetic lethal effect with the silencing of Sam68, hampering the cell viability of patient-derived BCSphCs and stabilizing the growth of tumor xenografts, including those TNBC carrying BRCA mutation. Moreover, the analysis of Myc, Sam68 and Rad51 expression demarcated a signature of a poor outcome in a large cohort of BC patients. Thus, our findings suggest the importance of targeting Sam68-PARP1 axis and Rad51 as potential therapeutic candidates to counteract the expansion of BC cells with an aggressive phenotype.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Proteínas de Unión al ADN , Proteínas de Unión al ARN , Recombinasa Rad51 , Neoplasias de la Mama Triple Negativas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Células Madre Neoplásicas/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Neoplasias de la Mama Triple Negativas/patología
13.
Methods Mol Biol ; 2318: 187-208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34019291

RESUMEN

MYC is a transcription factor playing multiple functions both in physiological and pathological settings. Biochemical characterizations, combined with the analyses of MYC chromatin binding, have shown that its pleiotropic activity depends on the chromatin context and its protein-protein interactions with different cofactors. In order to determine the contribution of MYC in a certain biological condition, it would be relevant to analyze the concomitant binding of MYC and its associated proteins, in relationship to the chromatin environment. To this end, we here provide a simple method to parallel map the genome-wide binding of MYC-associated proteins, together with the chromatin profiling of multiple histone modifications. We detail the procedure to perform high-throughput ChIP-seq (HT-ChIP-seq) with a variety of biological samples. In addition, we describe simple bioinformatic steps to determine the distribution of MYC binding with respect to the chromatin context and the association of its cofactors. The described approach will permit the reproducible characterization of MYC activity in different biological contexts.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Epigenómica/métodos , Proteínas Proto-Oncogénicas c-myc/genética , Cromatina/genética , Inmunoprecipitación de Cromatina/métodos , Biología Computacional/métodos , ADN/genética , Epigénesis Genética/genética , Genes myc/genética , Genes myc/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Código de Histonas/genética , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/metabolismo
14.
Cancers (Basel) ; 13(19)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34638453

RESUMEN

Cancer is a group of heterogeneous diseases that results from the occurrence of genetic alterations combined with epigenetic changes and environmental stimuli that increase cancer cell plasticity. Indeed, multiple cancer cell populations coexist within the same tumour, favouring cancer progression and metastatic dissemination as well as drug resistance, thereby representing a major obstacle for treatment. Epigenetic changes contribute to the onset of intra-tumour heterogeneity (ITH) as they facilitate cell adaptation to perturbation of the tumour microenvironment. Despite being its central role, the intrinsic multi-layered and reversible epigenetic pattern limits the possibility to uniquely determine its contribution to ITH. In this review, we first describe the major epigenetic mechanisms involved in tumourigenesis and then discuss how single-cell-based approaches contribute to dissecting the key role of epigenetic changes in tumour heterogeneity. Furthermore, we highlight the importance of dissecting the interplay between genetics, epigenetics, and tumour microenvironments to decipher the molecular mechanisms governing tumour progression and drug resistance.

15.
JCI Insight ; 6(23)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34673573

RESUMEN

Medulloblastoma (MB), one of the most malignant brain tumors of childhood, comprises distinct molecular subgroups, with p53 mutant sonic hedgehog-activated (SHH-activated) MB patients having a very severe outcome that is associated with unfavorable histological large cell/anaplastic (LC/A) features. To identify the molecular underpinnings of this phenotype, we analyzed a large cohort of MB developing in p53-deficient Ptch+/- SHH mice that, unexpectedly, showed LC/A traits that correlated with mTORC1 hyperactivation. Mechanistically, mTORC1 hyperactivation was mediated by a decrease in the p53-dependent expression of mTORC1 negative regulator Tsc2. Ectopic mTORC1 activation in mouse MB cancer stem cells (CSCs) promoted the in vivo acquisition of LC/A features and increased malignancy; accordingly, mTORC1 inhibition in p53-mutant Ptch+/- SHH MB and CSC-derived MB resulted in reduced tumor burden and aggressiveness. Most remarkably, mTORC1 hyperactivation was detected only in p53-mutant SHH MB patient samples, and treatment with rapamycin of a human preclinical model phenocopying this subgroup decreased tumor growth and malignancy. Thus, mTORC1 may act as a specific druggable target for this subset of SHH MB, resulting in the implementation of a stringent risk stratification and in the potentially rapid translation of this precision medicine approach into the clinical setting.


Asunto(s)
Proteínas Hedgehog/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Meduloblastoma/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular Tumoral , Humanos , Meduloblastoma/patología , Ratones
16.
Biomed Opt Express ; 11(8): 4397-4407, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32923051

RESUMEN

Single-cell analysis techniques are fundamental to study the heterogeneity of cellular populations, which is the basis to understand several biomedical mechanisms. Light-sheet fluorescence microscopy is a powerful technique for obtaining high-resolution imaging of individual cells, but the complexity of the setup and the sample mounting procedures limit its overall throughput. In our work, we present an optofluidic microscope-on-chip with integrated microlenses for light-sheet shaping and with a fluidic microchannel that allows the automatic and continuous delivery of samples of a few tens of microns in size. The device is used to perform dual-color fluorescence analysis and 3D reconstruction of xenograft-derived mouse breast cancer cells.

17.
Sci Adv ; 6(39)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32978159

RESUMEN

Cells respond to starvation by shutting down protein synthesis and by activating catabolic processes, including autophagy, to recycle nutrients. This two-pronged response is mediated by the integrated stress response (ISR) through phosphorylation of eIF2α, which represses protein translation, and by inhibition of mTORC1 signaling, which promotes autophagy also through a stress-responsive transcriptional program. Implementation of such a program, however, requires protein synthesis, thus conflicting with general repression of translation. How is this mismatch resolved? We found that the main regulator of the starvation-induced transcriptional program, TFEB, counteracts protein synthesis inhibition by directly activating expression of GADD34, a component of the protein phosphatase 1 complex that dephosphorylates eIF2α. We discovered that GADD34 plays an essential role in autophagy by tuning translation during starvation, thus enabling lysosomal biogenesis and a sustained autophagic flux. Hence, the TFEB-GADD34 axis integrates the mTORC1 and ISR pathways in response to starvation.


Asunto(s)
Autofagia , Inanición , Autofagia/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación/fisiología , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo
18.
Nat Genet ; 52(12): 1397-1411, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33169020

RESUMEN

The genetic elements required to tune gene expression are partitioned in active and repressive nuclear condensates. Chromatin compartments include transcriptional clusters whose dynamic establishment and functioning depend on multivalent interactions occurring among transcription factors, cofactors and basal transcriptional machinery. However, how chromatin players contribute to the assembly of transcriptional condensates is poorly understood. By interrogating the effect of KMT2D (also known as MLL4) haploinsufficiency in Kabuki syndrome, we found that mixed lineage leukemia 4 (MLL4) contributes to the assembly of transcriptional condensates through liquid-liquid phase separation. MLL4 loss of function impaired Polycomb-dependent chromatin compartmentalization, altering the nuclear architecture. By releasing the nuclear mechanical stress through inhibition of the mechanosensor ATR, we re-established the mechanosignaling of mesenchymal stem cells and their commitment towards chondrocytes both in vitro and in vivo. This study supports the notion that, in Kabuki syndrome, the haploinsufficiency of MLL4 causes an altered functional partitioning of chromatin, which determines the architecture and mechanical properties of the nucleus.


Asunto(s)
Anomalías Múltiples/genética , Núcleo Celular/fisiología , Cromatina/metabolismo , Cara/anomalías , Haploinsuficiencia/genética , Enfermedades Hematológicas/genética , N-Metiltransferasa de Histona-Lisina/genética , Enfermedades Vestibulares/genética , Células 3T3 , Animales , Línea Celular , Linaje de la Célula/genética , Condrocitos/citología , Condrogénesis/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Mecanotransducción Celular/fisiología , Células Madre Mesenquimatosas/citología , Ratones , Osteocitos/citología , Osteogénesis/genética , Proteínas del Grupo Polycomb/genética , Estrés Mecánico
19.
Cell Rep ; 29(12): 4036-4052.e10, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31851932

RESUMEN

The transition of neural progenitors to differentiated postmitotic neurons is mainly considered irreversible in physiological conditions. In the present work, we show that Shh pathway activation through SmoM2 expression promotes postmitotic neurons dedifferentiation, re-entering in the cell cycle and originating medulloblastoma in vivo. Notably, human adult patients present inactivating mutations of the chromatin reader BRPF1 that are associated with SMO mutations and absent in pediatric and adolescent patients. Here, we found that truncated BRPF1 protein, as found in human adult patients, is able to induce medulloblastoma in adult mice upon SmoM2 activation. Indeed, postmitotic neurons re-entered the cell cycle and proliferated as a result of chromatin remodeling of neurons by BRPF1. Our model of brain cancer explains the onset of a subset of human medulloblastoma in adult individuals where granule neuron progenitors are no longer present.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Cerebelosas/patología , Proteínas de Unión al ADN/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/patología , Mutación , Neuronas/patología , Receptor Smoothened/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Animales , Apoptosis , Proliferación Celular , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Femenino , Proteínas Hedgehog/genética , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Ratones Desnudos , Neuronas/metabolismo , Receptor Smoothened/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Neuron ; 104(2): 271-289.e13, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31515109

RESUMEN

Mutations in one SETD5 allele are genetic causes of intellectual disability and autistic spectrum disorders. However, the mechanisms by which SETD5 regulates brain development and function remain largely elusive. Herein, we found that Setd5 haploinsufficiency impairs the proliferative dynamics of neural progenitors and synaptic wiring of neurons, ultimately resulting in behavioral deficits in mice. Mechanistically, Setd5 inactivation in neural stem cells, zebrafish, and mice equally affects genome-wide levels of H3K36me3 on active gene bodies. Notably, we demonstrated that SETD5 directly deposits H3K36me3, which is essential to allow on-time RNA elongation dynamics. Hence, Setd5 gene loss leads to abnormal transcription, with impaired RNA maturation causing detrimental effects on gene integrity and splicing. These findings identify SETD5 as a fundamental epigenetic enzyme controlling the transcriptional landscape in neural progenitors and their derivatives and illuminate the molecular events that connect epigenetic defects with neuronal dysfunctions at the basis of related human diseases.


Asunto(s)
Encéfalo/embriología , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Código de Histonas/genética , Metiltransferasas/genética , Proteínas de Pez Cebra/fisiología , Animales , Conducta Animal , Encéfalo/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Cognición , Epigénesis Genética , Histona Metiltransferasas/genética , Metiltransferasas/fisiología , Ratones , Mutación , Células-Madre Neurales/metabolismo , Empalme del ARN/genética , RNA-Seq , Conducta Social , Elongación de la Transcripción Genética , Pez Cebra , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA