Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Chem Biol ; 15(8): 846, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31267096

RESUMEN

In the version of this article originally published, several lines of text in the last paragraph of the right column on page 1 of the PDF were transposed into the bottom paragraph of the left column. The affected text of the left column should read "The ATP-dependent activities of the BAF (SWI/SNF) chromatin remodeling complexes affect the positioning of nucleosomes on DNA and thereby many cellular processes related to chromatin structure, including transcription, DNA repair and decatenation of chromosomes during mitosis12,13." The affected text of the right column should read "SMARCA2/4BD inhibitors are thus precluded from use for the treatment of SMARCA4 mutant cancers but could provide attractive ligands for PROTAC conjugation. Small molecules binding to other bromodomains have been successfully converted into PROTACs by conjugating them with structures capable of binding to the E3 ligases von Hippel-Lindau (VHL) or cereblon5,6,10,11,25,26,27." The errors have been corrected in the PDF version of the paper.

2.
Nat Chem Biol ; 15(7): 672-680, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31178587

RESUMEN

Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Estructura Molecular , Proteínas Nucleares/metabolismo
3.
Antimicrob Agents Chemother ; 60(1): 142-50, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26482303

RESUMEN

ß-Lactams are the most successful antibacterials, but their effectiveness is threatened by resistance, most importantly by production of serine- and metallo-ß-lactamases (MBLs). MBLs are of increasing concern because they catalyze the hydrolysis of almost all ß-lactam antibiotics, including recent-generation carbapenems. Clinically useful serine-ß-lactamase inhibitors have been developed, but such inhibitors are not available for MBLs. l-Captopril, which is used to treat hypertension via angiotensin-converting enzyme inhibition, has been reported to inhibit MBLs by chelating the active site zinc ions via its thiol(ate). We report systematic studies on B1 MBL inhibition by all four captopril stereoisomers. High-resolution crystal structures of three MBLs (IMP-1, BcII, and VIM-2) in complex with either the l- or d-captopril stereoisomer reveal correlations between the binding mode and inhibition potency. The results will be useful in the design of MBL inhibitors with the breadth of selectivity required for clinical application against carbapenem-resistant Enterobacteriaceae and other organisms causing MBL-mediated resistant infections.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Captopril/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/química , Inhibidores de la Enzima Convertidora de Angiotensina/química , Antibacterianos/farmacología , Captopril/química , Carbapenémicos/farmacología , Clonación Molecular , Cristalografía por Rayos X , Reposicionamiento de Medicamentos , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/enzimología , Enterobacteriaceae/genética , Expresión Génica , Hidrólisis , Cinética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Resistencia betalactámica/efectos de los fármacos , Resistencia betalactámica/genética , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
4.
Chembiochem ; 13(18): 2683-9, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23169461

RESUMEN

Cyanobactins, including patellamides, are a group of cyanobacterial post-translationally modified ribosomal cyclic peptides. The final product should in theory be predictable from the sequence of the precursor peptide and the associated tailoring enzymes. Understanding the mechanism and recognition requirements of these enzymes will allow their rational engineering. We have identified three new cyanobactins from a Cyanothece PCC 7425 culture subjected to a heat shock. One of these compounds revealed a novel signature signal for ThcA, the subtilisin-like serine protease that is homologous to the patellamide protease PatA. The crystal structure of the latter and modelling studies allow rationalisation of the recognition determinants for both enzymes, consistent with the ribosomal biosynthetic origin of the new compounds.


Asunto(s)
Cyanothece/metabolismo , Péptidos Cíclicos/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos Cíclicos/química , Estructura Terciaria de Proteína , Serina Proteasas/química , Serina Proteasas/metabolismo
6.
J Med Chem ; 61(3): 1255-1260, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29271657

RESUMEN

Zinc ion-dependent ß-lactamases (MBLs) catalyze the hydrolysis of almost all ß-lactam antibiotics and resist the action of clinically available ß-lactamase inhibitors. We report how application of in silico fragment-based molecular design employing thiol-mediated metal anchorage leads to potent MBL inhibitors. The new inhibitors manifest potent inhibition of clinically important B1 subfamily MBLs, including the widespread NDM-1, IMP-1, and VIM-2 enzymes; with lower potency, some of them also inhibit clinically relevant Class A and D serine-ß-lactamases. The inhibitors show selectivity for bacterial MBL enzymes compared to that for human MBL fold nucleases. Cocrystallization of one inhibitor, which shows potentiation of Meropenem activity against MBL-expressing Enterobacteriaceae, with VIM-2 reveals an unexpected binding mode, involving interactions with residues from conserved active site bordering loops.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Simulación por Computador , Diseño de Fármacos , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Evaluación Preclínica de Medicamentos , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , beta-Lactamasas/química
7.
Nat Struct Mol Biol ; 19(8): 767-72, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22796963

RESUMEN

Peptide macrocycles are found in many biologically active natural products. Their versatility, resistance to proteolysis and ability to traverse membranes has made them desirable molecules. Although technologies exist to synthesize such compounds, the full extent of diversity found among natural macrocycles has yet to be achieved synthetically. Cyanobactins are ribosomal peptide macrocycles encompassing an extraordinarily diverse range of ring sizes, amino acids and chemical modifications. We report the structure, biochemical characterization and initial engineering of the PatG macrocyclase domain of Prochloron sp. from the patellamide pathway that catalyzes the macrocyclization of linear peptides. The enzyme contains insertions in the subtilisin fold to allow it to recognize a three-residue signature, bind substrate in a preorganized and unusual conformation, shield an acyl-enzyme intermediate from water and catalyze peptide bond formation. The ability to macrocyclize a broad range of nonactivated substrates has wide biotechnology applications.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Prochloron/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Modelos Moleculares , Oligopéptidos/química , Oligopéptidos/metabolismo , Péptidos Cíclicos/genética , Prochloron/genética , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Subtilisinas/química , Subtilisinas/genética , Subtilisinas/metabolismo , Simbiosis , Urocordados/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA