RESUMEN
STING is essential for control of infections and for tumor immunosurveillance, but it can also drive pathological inflammation. STING resides on the endoplasmic reticulum (ER) and traffics following stimulation to the ERGIC/Golgi, where signaling occurs. Although STING ER exit is the rate-limiting step in STING signaling, the mechanism that drives this process is not understood. Here we identify STEEP as a positive regulator of STING signaling. STEEP was associated with STING and promoted trafficking from the ER. This was mediated through stimulation of phosphatidylinositol-3-phosphate (PtdIns(3)P) production and ER membrane curvature formation, thus inducing COPII-mediated ER-to-Golgi trafficking of STING. Depletion of STEEP impaired STING-driven gene expression in response to virus infection in brain tissue and in cells from patients with STING-associated diseases. Interestingly, STING gain-of-function mutants from patients interacted strongly with STEEP, leading to increased ER PtdIns(3)P levels and membrane curvature. Thus, STEEP enables STING signaling by promoting ER exit.
Asunto(s)
Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/fisiología , Animales , Retículo Endoplásmico/inmunología , Humanos , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Proteínas de la Membrana/inmunología , Ratones , Proteínas del Tejido Nervioso/inmunología , Proteínas Nucleares , Transporte de Proteínas/fisiologíaRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Urbanization has accelerated dramatically across the world over the past decades. Urban influence on surface temperatures is now being considered as a correction term in climatological datasets. Although prior research has investigated urban influences on precipitation for specific cities or selected thunderstorm cases, a comprehensive examination of urban precipitation anomalies on a global scale remains limited. This research is a global analysis of urban precipitation anomalies for over one thousand cities worldwide. We find that more than 60% of the global cities and their downwind regions are receiving more precipitation than the surrounding rural areas. Moreover, the magnitude of these urban wet islands has nearly doubled in the past 20 y. Urban precipitation anomalies exhibit variations across different continents and climates, with cities in Africa, for example, exhibiting the largest urban annual and extreme precipitation anomalies. Cities are more prone to substantial urban precipitation anomalies under warm and humid climates compared to cold and dry climates. Cities with larger populations, pronounced urban heat island effects, and higher aerosol loads also show noticeable precipitation enhancements. This research maps global urban rainfall hotspots, establishing a foundation for the consideration of urban rainfall corrections in climatology datasets. This advancement holds promise for projecting extreme precipitation and fostering the development of more resilient cities in the future.
RESUMEN
Adaptation to high-altitude hypoxia is characterized by systemic and organ-specific metabolic changes. This study investigates whether intestinal metabolic rewiring is a contributing factor to hypoxia adaptation. We conducted a longitudinal analysis over 108 days, with seven timepoints, examining fecal metabolomics data from a cohort of 46 healthy male adults traveling from Chongqing (a.s.l. 243 m) to Lhasa (a.s.l. 3658 m) and back. Our findings reveal that short-term hypoxia exposure significantly alters intestinal metabolic pathways, particularly those involving purines, pyrimidines, and amino acids. A notable observation was the significantly reduced level of intestinal uric acid (UA), the end product of purine metabolism, during acclimatization (also called acclimation) and in additional two long-term exposed cohorts (Han Chinese and Tibetans) residing in Shigatse, Xizang (a.s.l. 4700 m), suggesting that low intestinal UA levels facilitate adaptation to high-altitude hypoxia. Integrative analyses with gut metagenomic data showed consistent trends in intestinal UA levels and the abundance of key UA-degrading bacteria, predominantly from the Lachnospiraceae family. The sustained high abundance of these bacteria in the long-term resident cohorts underscores their essential role in maintaining low intestinal UA levels. Collectively, these findings suggest that the rewiring of intestinal UA metabolism, potentially orchestrated by gut bacteria, is crucial for enhancing human resilience and adaptability in extreme environments.
RESUMEN
BACKGROUND: This study was to explore the causal associations of sleep traits including sleep duration, snoring, chronotype, sleep disorders, getting up in the morning, sleeplessness/insomnia and nap during day with the risk of thyroid cancer based on Mendelian randomization (MR) analysis. METHOD: Summary single nucleotide polymorphism (SNP)-phenotype association data were obtained from published genome-wide association studies (GWASs) using the FinnGen and UK Biobank databases. A series of screening processes were performed to select qualified SNPs strongly related to exposure. We applied the inverse variance weighted (IVW), the Mendelian Randomization robust adjusted profile score (MR-RAPS), the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO), and the Weighted Median to estimate the causal links between sleep traits and the risk of thyroid cancer. Odds ratio (OR) and 95% confidence interval (CI) were calculated. RESULTS: The IVW results showed that getting up in the morning (OR = 0.055, 95%CI: 0.004-0.741) and napping during day (OR = 0.031, 95%CI: 0.002-0.462) were associated with decreased risk of thyroid cancer in the Italian population. A 1.30-h decrease of sleep duration was associated with 7.307-fold of thyroid cancer risk in the Finnish population (OR = 7.307, 95%CI: 1.642-32.519). Cronotype could decrease the risk of thyroid cancer in the Finnish population (OR = 0.282, 95%CI: 0.085-0.939). Sleep disorders increased the risk of thyroid cancer in the Finnish population (OR = 2.298, 95%CI: 1.194-4.422). The combined results revealed that sleep duration was correlated with increased risk of thyroid cancer (OR = 5.600, 95%CI: 1.458-21.486). CONCLUSION: Decreased sleep duration was associated with increased risk of thyroid cancer, which indicated the importance of adequate sleep for the prevention of thyroid cancer.
Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Sueño , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/epidemiología , Factores de Riesgo , Predisposición Genética a la Enfermedad , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/complicacionesRESUMEN
Fluorescence resonance energy transfer (FRET) is an important mechanism to design ratiometric fluorescent probes that are able to detect analytes quantitatively according to the ratio of two well-resolved emission signals. Two-photon (TP) fluorescent probes can realize the detection in living cells and tissues with deeper penetration depth, higher resolution, and lower photodamage in contrast to one-photon fluorescent probes. However, to date, fabricating TP-FRET ratiometric fluorescent probes possessing large two-photon absorption (TPA), high fluorescence quantum yield and perfect FRET efficiency is still challenging. Consequently, to develop excellent TP-FRET ratiometric probes and explore the relationship between their molecular structures and TP fluorescence properties, in this paper, we designed a series of H2S-detecting TP fluorescent probes employing the FRET mechanism based on an experimental probe BCD. Thereafter, we comprehensively evaluated the TP sensing performance of these probes by means of time-dependent density functional theory and quadratic response theory. Furthermore, we determined energy transfer efficiency and fluorescence quantum yield. Significantly, through regulating benzene-fused positions, we successfully improved fluorescence quantum yield and TPA cross-section simultaneously. Large spectral overlap between energy donor emission and acceptor absorption was achieved and near perfect energy transfer efficiency was acquired for all the studied probes. We revealed that these probes exhibit two well-resolved TPA bands, which are contributed by FRET donors and acceptors, respectively. Especially, both the wavelengths and the cross-sections of the two TPA bands agree well with those of energy donors and acceptors, which is the unique TPA spectral profile of FRET probes and has never been previously reported. Moreover, we proposed an excellent TP-FRET probe BCD3 and its product molecule BCD3-H2S, which exhibit large Stokes (141 nm and 88 nm) and emission shifts (5931 cm-1), as well as greatly increased TP action cross-sections (24-fold and 60-fold) in the near-infrared region with respect to BCD and BCD-H2S. Our detailed study can give an insight into the efficient design of novel TP-FRET fluorescent probes.
RESUMEN
Hypoxia has been reported to promote the proliferation and migration of thyroid cancer, while the special mechanism was still unclear. HIF-1α/carnitine palmitoyl-transferase 1A (CPT1A) was found to be associated with papillary thyroid carcinoma (PTC) but the biological role of CPT1A in PTC was not explored. The effects of hypoxia and carnitine palmitoyl-transferase 1A (CPT1A) expression on PTC cells were determined by cell counting kit-8 assay, detection of oxidative stress, inflammation response and mitochondrial membrane motential (MMP). Oil Red O staining and the detection of free fatty acids were performed to assess the status of lipid metabolism. Flow cytometric analysis was performed to assess cell apoptosis. Quantitative polymerase chain reaction (qPCR) and western blot analysis were applied to investigate the expressions of CPT1A and HIF-1α and the molecules involved cell function. The expressions of CPT1A and HIF-1α were significantly increased in PTC cells with or without hypoxia treatment. CPT1A overexpression or silencing promoted or inhibited cell viability, and hypoxia further repressed cell viability. In addition, CPT1A overexpression alleviates hypoxia-induced increased oxidative stress, inflammation response and elevated MMP. CPT1A overexpression enhanced palmitic acid-induced decreased cell growth, enhanced the metabolic capacity of free fatty acid and suppressed cell apoptosis. Animal experiments showed that CPT1A overexpression promoted PTC tumor growth, reduced lipid deposition, oxidative stress and inflammation, as well as enhancing cell function indicators. However, CPT1A silencing showed the opposite effects both in vitro and in vivo. Hypoxia induces the high expression of HIF-1α/CPT1A, thereby reprogramming the lipid metabolism of PTC cells for adapting the hypoxia environment, meanwhile inhibiting the cell damage and apoptosis caused by oxidative stress.
Asunto(s)
Metabolismo de los Lípidos , Neoplasias de la Tiroides , Animales , Cáncer Papilar Tiroideo/genética , Estrés Oxidativo , Neoplasias de la Tiroides/genética , Hipoxia , Inflamación , Ácidos Grasos , CarnitinaRESUMEN
The Asian honey bee (Apis cerana) plays a crucial role in providing abundant bee products and in maintaining ecological balance. Despite the availability of the genomic sequence of the Asian honey bee, its transcriptomic information remains largely incomplete. To address this issue, here we constructed three pooled RNA samples from the queen, drone, and worker bees of A. cerana and performed full-length RNA sequencing using Nanopore single-molecule sequencing technology. Ultimately, we obtained 160,811 full-length transcript sequences from 19,859 genes, with 141,189 being novel transcripts, of which 130,367 were functionally annotated. We detected 520, 324, and 1823 specifically expressed transcripts in the queen, worker, and drone bees, respectively. Furthermore, we identified 38,799 alternative splicing (AS) events from 5710 genes, 44,243 alternative polyadenylation (APA) sites from 1649 gene loci, 88,187 simple sequence repeats (SSRs), and 17,387 long noncoding RNAs (lncRNAs). Leveraging these transcripts as references, we identified 6672, 7795, and 6804 differentially expressed transcripts (DETs) in comparisons of queen ovaries vs drone testes, worker ovaries vs drone testes, and worker ovaries vs queen ovaries, respectively. Our research results provide a comprehensive set of reference transcript datasets for Apis cerana, offering important sequence information for further exploration of its gene functions.
Asunto(s)
Empalme Alternativo , Perfilación de la Expresión Génica , Secuenciación de Nanoporos , ARN Largo no Codificante , Transcriptoma , Abejas/genética , Animales , Transcriptoma/genética , Secuenciación de Nanoporos/métodos , Perfilación de la Expresión Génica/métodos , ARN Largo no Codificante/genética , Femenino , Análisis de Secuencia de ARN/métodos , Masculino , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular , Poliadenilación/genéticaRESUMEN
Few studies investigate the impact of anterior-posterior excitation frequency on the time-domain vibrational response and injury risk of the lumbar spine in seated individuals. Firstly, this study utilised a previously developed finite element model of an upright seated human body on a rigid chair without a backrest to investigate the modes that affect the anterior-posterior vibrations of the seated body. Subsequently, transient dynamic analysis was employed to calculate the lumbar spine's time-domain responses (displacement, stress, and pressure) and risk factors under anteroposterior sinusoidal excitation at varying frequencies (1-8 Hz). Modal analysis suggested the frequencies significantly affecting the lumbar spine's vibration were notably at 4.7 Hz and 5.5 Hz. The transient analysis results and risk factor assessment indicated that the lumbar responses were most pronounced at 5 Hz. In addition, risk factor assessment showed that long-term exposure to 8 Hz vibration was associated with a greater risk of lumbar injury.
Although the anterior-posterior resonance frequency of the sitting body is around 1 Hz, the anterior-posterior vibrations approaching 5 Hz and at 8 Hz inflict more significant harm upon the lumbar spine than other frequencies, thereby elevating the risk of lumbar injury and back disorders.
RESUMEN
RNA-Seq analysis of Formalin-Fixed and Paraffin-Embedded (FFPE) samples has emerged as a highly effective approach and is increasingly being used in clinical research and drug development. However, the processing and storage of FFPE samples are known to cause extensive degradation of RNAs, which limits the discovery of gene expression or gene fusion-based biomarkers using RNA sequencing, particularly methods reliant on Poly(A) enrichment. Recently, researchers have developed an exome targeted RNA-Seq methodology that utilizes biotinylated oligonucleotide probes to enrich RNA transcripts of interest, which could overcome these limitations. Nevertheless, the standardization of this experimental framework, including probe designs, sample multiplexing, sequencing read length, and bioinformatic pipelines, remains an essential requirement. In this study, we conducted a comprehensive comparison of three main commercially available exome capture kits and evaluated key experimental parameters, to provide the overview of the advantages and limitations associated with the selection of library preparation protocols and sequencing platforms. The results provide valuable insights into the best practices for obtaining high-quality data from FFPE samples.
Asunto(s)
Exoma , Formaldehído , Perfilación de la Expresión Génica/métodos , Parafina , Adhesión en Parafina/métodos , ARN/genética , Análisis de Secuencia de ARN , Fijación del Tejido/métodosRESUMEN
This cohort study evaluated the associations of different treatments with the prognosis of follicular variant papillary thyroid carcinoma (FVPTC) and classical papillary thyroid carcinoma (CPTC) patients. The data of 69034 PTC patients were retrieved from the Surveillance, Epidemiology, and End Results (SEER) database. The 5-year mortality of CPTC and FVPTC patients receiving surgery, radiation and combination therapy were compared. The univariable and multivariable cox proportional risk models explored the associations between different treatments and the 5-year mortality in CPTC and FVPTC patients. The 5-year mortality of CPTC patients was 2.81% and FVPTC patients was 2.47%. Compared with CPTC receiving lobectomy and/or isthmectomy, those not receiving surgery were associated with increased risk of 5-year mortality [Hazards ratio (HR)=3.27, 95% confidence interval (CI): 2.55-4.20] while total thyroidectomy was correlated with reduced risk of 5-year mortality (HR=0.67, 95%CI: 0.55-0.80). Radioactive iodine (RAI) was linked with decreased risk of 5-year mortality in CPTC patients (HR=0.57, 95%CI: 0.50-0.65). CPTC patients undergoing both surgery and radiation were related to decreased risk of 5-year mortality compared with those receiving surgery only (HR=0.55, 95%CI: 0.48-0.63). CPTC patients receiving neither surgery nor radiation (HR=4.53, 95%CI: 3.72-5.51) or those receiving radiation (HR=1.98, 95%CI: 1.13-3.48) were correlated with elevated risk of 5-year mortality. The elevated risk of 5-year mortality in FVPTC patients was reduced in those undergoing RAI (HR=0.63, 95%CI: 0.51-0.76). In conclusion, combination therapy was associated with decreased risk of 5-year mortality in CPTC and FVPTC patients, which might provide a reference for the management of these patients.
Asunto(s)
Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/radioterapia , Neoplasias de la Tiroides/cirugía , Cáncer Papilar Tiroideo/cirugía , Estudios de Cohortes , Radioisótopos de Yodo/uso terapéutico , Pronóstico , Estudios RetrospectivosRESUMEN
BACKGROUND: The neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), systemic immune-inflammatory index (SII), systemic inflammation response index (SIRI), and Onodera's prognostic nutritional index (OPNI) have been reported as prognostic markers for various cancers. We evaluated the prognostic value of the NLR, PLR, MLR, SII, SIRI, and OPNI for poorly-to moderately-differentiated cervical squamous cell carcinoma (CSCC). PATIENTS AND METHODS: We retrospectively analyzed the cases of 109 patients with early-stage poorly-to moderately-differentiated CSCC who underwent radical surgery at our institution in 2014-2017. The optimal cutoff points for the NLR, PLR, MLR, SII, SIRI, and OPNI were determined by receiver operating characteristic curves. Overall survival was analyzed by the Kaplan-Meier method. We performed a multivariate analysis using the Cox proportional hazard regression model to determine the independent prognostic indicators for early-stage poorly-to moderately-differentiated CSCC. RESULTS: The appropriate cutoff points were: NLR, 1.72; PLR, 111.96; MLR, .24; SII, 566.23; SIRI, 1.38; and OPNI, 52.68. The OS of the patients with a high OPNI (P = .04), low SII (P = .03), or low SIRI (P = .01) was significantly better. The uni- and multivariate analyses identified only the OPNI as an independent prognostic marker for early-stage poorly-to moderately-differentiated CSCC (P = .04 and P = .02). CONCLUSION: The OPNI is an independent prognostic marker for early-stage poorly-to moderately-differentiated CSCC; the NLR, PLR, MLR, SII, and SIRI are not.
Asunto(s)
Carcinoma de Células Escamosas , Inflamación , Humanos , Pronóstico , Estudios Retrospectivos , Carcinoma de Células Escamosas/cirugía , Carcinoma de Células Escamosas/patología , Linfocitos/patologíaRESUMEN
Monolayer (ML) PtSe2 is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic devices. Finding suitable metal electrodes is a key factor in fabricating high-performance PtSe2 field effect transistors (FETs). In this study, a series of 2D metals, transition metal dichalcogenides (NbSe2, TaS2), borophene, and MXenes (V2C(OH)2, V2CF2, Nb2C(OH)2, Nb2CF2, Nb2CO2, Hf2C(OH)2, Hf2CF2) were used as electrodes for FET fabrication. The interfacial electronic properties of electrodes and PtSe2 were studied in both the vertical and lateral directions using the ab initio method. In the vertical direction, PtSe2 formed ohmic contacts with most of the 2D metals except for Nb2CF2 and Hf2CF2. Specifically, in the cases of Nb2CF2 and Hf2CF2, p- and n-type Schottky contacts were formed with Schottky barrier heights (SBHs) of 0.48 eV and 0.02 eV, respectively. In the lateral direction, PtSe2 with contacting Hf2CF2 and V2C(OH)2 electrodes formed n-type Schottky contacts with SBHs of 0.14 eV and 0.09 eV, respectively. In the cases of TaS2 and Nb2CF2 electrodes, p-type Schottky contacts with SBHs of 0.35 eV and 0.29 eV, respectively, were formed. Moreover, n-type ohmic contacts were observed when Hf2C(OH)2 and Nb2C(OH)2 electrodes were applied, and p-type ohmic contacts were formed when borophene, NbSe2, Nb2CO2, and V2CF2 electrodes were used. This work reports a systematic investigation of ML PtSe2-2D metal interfaces and serves as a practical guide for selecting electrode materials for PtSe2 FETs.
RESUMEN
We study the regulation of the electronic and spin transport properties of the WGe2N4 monolayer by adsorbing 4d transition metal atoms (Y-Cd) using density functional theory combined with non-equilibrium Green's function. It is found that the adsorption of transition metal atoms (except Pd, Ag and Cd atoms) can introduce a magnetic moment into the WGe2N4 monolayer. Among the transition metal atoms, the adsorption of Nb and Rh atoms transforms WGe2N4 from a semiconductor to a half-metal and a highly spin-polarized semiconductor, respectively. The half-metallic Nb-adsorbed WGe2N4 system is selected to investigate the spin transport properties, and a high magnetoresistance ratio of 107% is achieved. In both parallel and antiparallel magnetization configurations, the spin filtering efficiency reaches close to 100% in the whole bias range, and the antiparallel magnetization configuration exhibits a dual spin filtering effect with a rectification ratio of up to 104. Our study predicts that the adsorption of 4d transition metal heteroatoms is an effective method to regulate the electronic and magnetic properties of WGe2N4 towards high-performance spintronic devices.
RESUMEN
Atherosclerosis (AS) is chronic pathological process based on the inflammatory reaction associated with factors including vascular endothelial dysfunction, inflammation, and autoimmunity. Inflammasomes are known to be at the core of the inflammatory response. As a pattern recognition receptor of innate immunity, the NLRP3 inflammasome mediates the secretion of inflammatory factors by activating the Caspase-1, which is important for maintaining the immune system and regulating the gut microbiome, and participates in the occurrence and development of AS. The intestinal microecology is composed of a large number of complex structures of gut microbiota and its metabolites, which play an important role in AS. The gut microbiota and its metabolites regulate the activation of the NLRP3 inflammasome. Targeting the NLRP3 inflammasome and regulating intestinal microecology represent a new direction for the treatment of AS. This paper systematically reviews the interaction between the NLRP3 inflammasome and gut microbiome in AS, strategies for targeting the NLRP3 inflammasome and gut microbiome for the treatment of AS, and provides new ideas for the research and development of drugs for the treatment of AS.
Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiología , Humanos , Inflamasomas , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLRRESUMEN
The spin-resolved transport properties of molecular logic devices composed of two Mn porphyrin molecules connected to each other via a six-carbon atomic chain were studied using the non-equilibrium Green's function combined with density functional theory. The molecules were symmetrically connected to armchair graphene nanoribbon electrodes through four-carbon atomic chains on the left- and right-hand sides. Our calculations revealed that the spin-resolved current-voltage curves depend on the initial spin setting of the transition metal Mn atoms and carbon atoms on the zigzag edges where the electrodes come in contact with the molecule. By simultaneously regulating the spin orientations of the intermediate functional molecules and the zigzag edges of the armchair graphene nanoribbon electrodes, seven spin polarization configurations were obtained. These configurations were examined in this study considering the spin-related symmetry of molecular junctions. By meticulously selecting different combinations according to the specific input and output signals, YES, NOT, OR, NOR, and XOR multifarious spin logic devices were created. The findings of this study are expected to contribute toward the extension of molecular junction functions in future spintronic integrated circuit design and further miniaturization.
RESUMEN
Diodes have been widely studied as one of the most commonly used electronic components in circuits, and it is important to find diodes with an excellent rectification performance. Herein, we investigate the electronic and transport properties of Schottky contact diodes based on zigzag hydrogenated blue phosphorene nanoribbons, by employing density functional theory combined with the non-equilibrium Green's function. It is found that the adsorption of transition metal atoms Sc/Cr/Ti and Ni on the top site of blue phosphorene nanoribbons leads to metallic and semiconducting properties, respectively. Devices consisting of the planar contact of the metallic and semiconducting nanoribbons show rectifying behavior due to the Schottky barriers of the homojunctions. The current is preferential to flow from the semiconducting side to the metallic side. The rectification ratio of the Sc-Ni device and the Cr-Ni device can reach up to 108, which is much higher than that of traditional p-n junctions of about 105-107. The high rectification ratio at low bias regions, together with the low threshold voltages and negligible reverse currents, make blue phosphorene nanoribbon homojunctions ideal rectifier diodes.
RESUMEN
Mecobalamin is commonly used in the adjuvant intervention of various peripheral nerve injuries. Actin cytoskeleton plays a role in the regeneration of myelin and axon. Therefore, the purpose of this study was to explore the possibility of mecobalamin regulating actin cytoskeleton in repairing nerve injury. In this study, a crush injury on the right sciatic nerve of two groups of rats (12 in each group) was established. The control group was only given normal saline (i.g.), and the intervention group was given mecobalamin 1 mg/kg (i.g.). The rats were sacrificed on 28th day and the injured nerves were collected for proteomics. The result shows that regulation of actin cytoskeleton pathway changed significantly. The expression of protein Vav1 was verified by Western blot and immunofluorescence. In the intervention group, the nerve fiber structure was complete, the axons were dense and symmetrical, and the myelin sheath was compact and uniform in thickness. The positive rate of myelin basic protein and ßâ ¢-tubulin was higher than that in the control group. The findings of the study show that mecobalamin regulates the actin cytoskeleton in the repair of nerve damage and upregulates Vav1 in the regulation of actin cytoskeleton pathway.
Asunto(s)
Traumatismos de los Nervios Periféricos , Proteómica , Animales , Axones/metabolismo , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-vav/metabolismo , Ratas , Nervio Ciático/metabolismo , Vitamina B 12/análogos & derivadosRESUMEN
Dysregulated expression of ubiquitin-specific protease 43 (USP43) has been recently discovered in malignancies. This study aimed to investigate the expression pattern of USP43 protein in lung squamous cell carcinoma (LUSC) and to explore its correlation with patients' clinicopathological characteristics as well as clinical outcomes. Expression of USP43 protein was determined by immunohistochemistry staining in a retrospective cohort containing 157 LUSC cases who underwent curative surgery in our hospital. Accordingly, USP43 protein was positively correlated with tumor size, depth of invasion, and lymph node metastasis. Patients with increased USP43 expression or positive lymph nodes exhibited a poorer overall survival. In addition, cellular assays elucidated that USP43 can promote LUSC growth and invasion. Taken together, our study demonstrated that USP43 may act as a proto-oncogene, which could be a promising biomarker and therapeutic target in the survival prediction and treatment of LUSC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Ubiquitina Tiolesterasa , Carcinogénesis , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pronóstico , Estudios Retrospectivos , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismoRESUMEN
OBJECTIVE: To update the recognition of the trends in the incidence of childhood thyroid cancer (TC) and its prognosis. METHODS: A large-scale sample based on long time-line public database was recruited. Join-point regression model was used to analyze the incidence trend of childhood TC. Univariable and multivariable Cox regression model analyses were applied to explore the survival situation and prognostic factors. RESULTS: The incidence rate of childhood TC increased between 1975 and 2016 from 3.8/million (95% CI 2.6-5.5) to 11.5/million (95% CI 9.2-14.1), AAPC = 2.38% (95% CI 1.98-9.65) and could be divided into two stages of increasing trends. The incidence rate of Trend1 (1975-2005) increased slowly (APC = 1.08%, 95% CI 0.38-1.82) while Trend2 (2005-2016) increased dramatically (APC = 6.77%, 95% CI 4.30-9.28). Annual incidence rate of small size tumor (< 4 cm) and local stage childhood TC increased significantly. The overall cumulative survival rate for childhood TC was high up to 97-99%. Males, black race, MTC type, distant metastasis, tumor size ≥ 4 cm, non-primary cancer were the independent risk factors of childhood TC prognosis. CONCLUSION: A contribution of overdetection to rising pediatric TC rates might not be able to rule out. For clinical implications, screening TC in children with potential specific risk factors is feasible. Over-treatment to small size and local stage TC in children should be avoided.