Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 20(1): 325, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109078

RESUMEN

BACKGROUND: Klebsiella pneumoniae is a leading cause of intractable hospital-acquired multidrug-resistant infections and carbapenemase-producing K. pneumoniae (CPKp) are particularly feared. Most of the clinical isolates produce capsule as a major virulence factor. Recombination events at the capsule locus are frequent and responsible for capsule diversity within Klebsiella spp. Capsule diversity may also occur within clonal bacterial populations generating differences in colony aspect. However, little is known about this phenomenon of phenotypic variation in CPKp and its consequences. RESULTS: Here, we explored the genetic causes of in vitro switching from capsulated, mucoid to non-mucoid, non-capsulated phenotype in eight clinical CPKp isolates. We compared capsulated, mucoid colony variants with one of their non-capsulated, non-mucoid isogenic variant. The two colony variants were distinguished by their appearance on solid medium. Whole genome comparison was used to infer mutations causing phenotypic differences. The frequency of phenotypic switch was strain-dependent and increased along with colony development on plate. We observed, for 72 non-capsulated variants that the loss of the mucoid phenotype correlates with capsule deficiency and diverse genetic events, including transposition of insertion sequences or point mutations, affecting genes belonging to the capsule operon. Reduced or loss of capsular production was associated with various in vitro phenotypic changes, affecting susceptibility to carbapenem but not to colistin, in vitro biofilm formation and autoaggregation. CONCLUSIONS: The different impact of the phenotypic variation among the eight isolates in terms of capsule content, biofilm production and carbapenem susceptibility suggested heterogeneous selective advantage for capsular loss according to the strain and the mutation. Based on our results, we believe that attention should be paid in the phenotypic characterization of CPKp clinical isolates, particularly of traits related to virulence and carbapenem resistance.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Klebsiella pneumoniae/genética , Factores de Virulencia/genética , beta-Lactamasas/genética , Animales , Antibacterianos/farmacología , Cápsulas Bacterianas/genética , Biopelículas , Carbapenémicos/farmacología , Colistina/farmacología , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Pruebas de Sensibilidad Microbiana , Fenotipo , Virulencia
2.
Nat Commun ; 15(1): 4093, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750030

RESUMEN

Plasmids carrying antibiotic resistance genes (ARG) are the main mechanism of resistance dissemination in Enterobacterales. However, the fitness-resistance trade-off may result in their elimination. Chromosomal integration of ARGs preserves resistance advantage while relieving the selective pressure for keeping costly plasmids. In some bacterial lineages, such as carbapenemase producing sequence type ST38 Escherichia coli, most ARGs are chromosomally integrated. Here we reproduce by experimental evolution the mobilisation of the carbapenemase blaOXA-48 gene from the pOXA-48 plasmid into the chromosome. We demonstrate that this integration depends on a plasmid-induced fitness cost, a mobile genetic structure embedding the ARG and a novel antiplasmid system ApsAB actively involved in pOXA-48 destabilization. We show that ApsAB targets high and low-copy number plasmids. ApsAB combines a nuclease/helicase protein and a novel type of Argonaute-like protein. It belongs to a family of defense systems broadly distributed among bacteria, which might have a strong ecological impact on plasmid diffusion.


Asunto(s)
Escherichia coli , Plásmidos , beta-Lactamasas , Plásmidos/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Cromosomas Bacterianos/genética
3.
mSystems ; 7(1): e0116921, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35014866

RESUMEN

Carbapenemase-producing Escherichia coli (CP-Ec) represents a major public health threat with a risk of dissemination in the community as has occurred for lineages producing extended-spectrum ß-lactamases. To characterize the extent of CP-Ec spread in France, isolates from screening and infection samples received at the French National Reference Center (F-NRC) laboratory for carbapenemase-producing Enterobacterales were investigated. A total of 691 CP-Ec isolates collected between 2012 and 2015 and 22 isolates collected before 2012 were fully sequenced. Analysis of their genome sequences revealed some disseminating multidrug-resistant (MDR) lineages frequently acquiring diverse carbapenemase genes mainly belonging to clonal complex 23 (CC23) (sequence type 410 [ST410]) and CC10 (ST10 and ST167) and sporadic isolates, including rare ST131 isolates (n = 17). However, the most represented sequence type (ST) was ST38 (n = 92) with four disseminated lineages carrying blaOXA-48-like genes inserted in the chromosome. Globally, the most frequent carbapenemase gene (n = 457) was blaOXA-48. It was also less frequently associated with MDR isolates being the only resistance gene in 119 isolates. Thus, outside the ST38 clades, its acquisition was frequently sporadic with no sign of dissemination, reflecting the circulation of the IncL plasmid pOXA-48 in France and its high frequency of conjugation. In contrast, blaOXA-181 and blaNDM genes were often associated with the evolution of MDR E. coli lineages characterized by mutations in ftsI and ompC. IMPORTANCE Carbapenemase-producing Escherichia coli (CP-Ec) might be difficult to detect, as MICs can be very low. However, their absolute number and their proportion among carbapenem-resistant Enterobacterales have been increasing, as reported by WHO and national surveillance programs. This suggests a still largely uncharacterized community spread of these isolates. Here, we have characterized the diversity and evolution of CP-Ec isolated in France before 2016. We show that carbapenemase genes are associated with a wide variety of E. coli genomic backgrounds and a small number of dominant phylogenetic lineages. In a significant proportion of CP-Ec, the most frequent carbapenemase gene blaOXA-48, was detected in isolates lacking any other resistance gene, reflecting the dissemination of pOXA-48 plasmids, likely in the absence of any antibiotic pressure. In contrast, carbapenemase gene transfer may also occur in multidrug-resistant E. coli, ultimately giving rise to at-risk lineages encoding carbapenemases with a high potential of dissemination.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Escherichia coli , Humanos , Escherichia coli , Infecciones por Escherichia coli/epidemiología , Filogenia , Francia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA