Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Development ; 137(10): 1669-77, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20392744

RESUMEN

Polarization of the C. elegans zygote is initiated by ECT-2-dependent cortical flows, which mobilize the anterior PAR proteins (PAR-3, PAR-6 and PKC-3) away from the future posterior end of the embryo marked by the sperm centrosome. Here, we demonstrate the existence of a second, parallel and redundant pathway that can polarize the zygote in the absence of ECT-2-dependent cortical flows. This second pathway depends on the polarity protein PAR-2. We show that PAR-2 localizes to the cortex nearest the sperm centrosome even in the absence of cortical flows. Once on the cortex, PAR-2 antagonizes PAR-3-dependent recruitment of myosin, creating myosin flows that transport the anterior PAR complex away from PAR-2 in a positive-feedback loop. We propose that polarity in the C. elegans zygote is initiated by redundant ECT-2- and PAR-2-dependent mechanisms that lower PAR-3 levels locally, triggering a positive-feedback loop that polarizes the entire cortex.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Caenorhabditis elegans/fisiología , Polaridad Celular/genética , Cigoto/crecimiento & desarrollo , Alelos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero , Genes de Helminto/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Transducción de Señal/fisiología , Cigoto/metabolismo , Cigoto/fisiología
2.
BMC Dev Biol ; 12: 6, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22273551

RESUMEN

BACKGROUND: Because of the structural and molecular similarities between the two systems, the lateral line, a fish and amphibian specific sensory organ, has been widely used in zebrafish as a model to study the development/biology of neuroepithelia of the inner ear. Both organs have hair cells, which are the mechanoreceptor cells, and supporting cells providing other functions to the epithelium. In most vertebrates (excluding mammals), supporting cells comprise a pool of progenitors that replace damaged or dead hair cells. However, the lack of regenerative capacity in mammals is the single leading cause for acquired hearing disorders in humans. RESULTS: In an effort to understand the regenerative process of hair cells in fish, we characterized and cloned an egfp transgenic stable fish line that trapped tnks1bp1, a highly conserved gene that has been implicated in the maintenance of telomeres' length. We then used this Tg(tnks1bp1:EGFP) line in a FACsorting strategy combined with microarrays to identify new molecular markers for supporting cells. CONCLUSIONS: We present a Tg(tnks1bp1:EGFP) stable transgenic line, which we used to establish a transcriptional profile of supporting cells in the zebrafish lateral line. Therefore we are providing a new set of markers specific for supporting cells as well as candidates for functional analysis of this important cell type. This will prove to be a valuable tool for the study of regeneration in the lateral line of zebrafish in particular and for regeneration of neuroepithelia in general.


Asunto(s)
Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes/genética , Sistema de la Línea Lateral/citología , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Transcriptoma , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Expresión Génica , Genes Reporteros , Marcadores Genéticos , Proteínas Fluorescentes Verdes/biosíntesis , Hibridación in Situ , Larva/citología , Larva/metabolismo , Sistema de la Línea Lateral/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutagénesis Insercional , Mucosa Olfatoria/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Transcripción Genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
3.
Nat Cell Biol ; 13(11): 1361-7, 2011 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-21983565

RESUMEN

A hallmark of polarized cells is the segregation of the PAR polarity regulators into asymmetric domains at the cell cortex. Antagonistic interactions involving two conserved kinases, atypical protein kinase C (aPKC) and PAR-1, have been implicated in polarity maintenance, but the mechanisms that initiate the formation of asymmetric PAR domains are not understood. Here, we describe one pathway used by the sperm-donated centrosome to polarize the PAR proteins in Caenorhabditis elegans zygotes. Before polarization, cortical aPKC excludes PAR-1 kinase and its binding partner PAR-2 by phosphorylation. During symmetry breaking, microtubules nucleated by the centrosome locally protect PAR-2 from phosphorylation by aPKC, allowing PAR-2 and PAR-1 to access the cortex nearest the centrosome. Cortical PAR-1 phosphorylates PAR-3, causing the PAR-3-aPKC complex to leave the cortex. Our findings illustrate how microtubules, independently of actin dynamics, stimulate the self-organization of PAR proteins by providing local protection against a global barrier imposed by aPKC.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Polaridad Celular , Microtúbulos/enzimología , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cigoto/enzimología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Microtúbulos/genética , Complejos Multienzimáticos , Dominios PDZ , Fosforilación , Proteína Quinasa C/genética , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo
4.
Proc Natl Acad Sci U S A ; 104(30): 12428-33, 2007 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-17640903

RESUMEN

Using a combination of techniques we developed, we infected zebrafish embryos using pseudotyped retroviruses and mapped the genomic locations of the proviral integrations in the F(1) offspring of the infected fish. From F(1) fish, we obtained 2,045 sequences representing 933 unique retroviral integrations. A total of 599 were mappable to the current genomic assembly (Zv6), and 233 of the integrations landed within genes. By inbreeding fish carrying proviral integrations in 25 different genes, we were able to demonstrate that in approximately 50% of the gene "hits," the mRNA transcript levels were reduced by >/=70%, with the highest probability for mutation occurring if the integration was in an exon or first intron. Based on these data, the mutagenic frequency for the retrovirus is nearly one in five integrations. In addition, a strong mutagenic effect is seen when murine leukemia virus integrates specifically in the first intron of genes but not in other introns. Three of 19 gene inactivation events had embryonic defects. Using the strategy we outlined, it is possible to identify 1 mutagenic event for every 30 sequencing reactions done on the F(1) fish. This is a 20- to 30-fold increase in efficiency when compared with the current resequencing approach [targeting induced local lesions in genomes (TILLING)] used in zebrafish for identifying mutations in genes. Combining this increase in efficiency with cryopreservation of sperm samples from the F(1) fish, it is now possible to create a stable resource that contains mutations in every known zebrafish gene.


Asunto(s)
Genoma/genética , Mutagénesis/genética , Retroviridae/genética , Pez Cebra/genética , Animales , Homocigoto , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , ARN Mensajero/genética , Selección Genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA