Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458973

RESUMEN

There has been an explosion in research focused on Internet of Things (IoT) devices in recent years, with a broad range of use cases in different domains ranging from industrial automation to business analytics. Being battery-powered, these small devices are expected to last for extended periods (i.e., in some instances up to tens of years) to ensure network longevity and data streams with the required temporal and spatial granularity. It becomes even more critical when IoT devices are installed within a harsh environment where battery replacement/charging is both costly and labour intensive. Recent developments in the energy harvesting paradigm have significantly contributed towards mitigating this critical energy issue by incorporating the renewable energy potentially available within any environment in which a sensor network is deployed. Radio Frequency (RF) energy harvesting is one of the promising approaches being investigated in the research community to address this challenge, conducted by harvesting energy from the incident radio waves from both ambient and dedicated radio sources. A limited number of studies are available covering the state of the art related to specific research topics in this space, but there is a gap in the consolidation of domain knowledge associated with the factors influencing the performance of RF power harvesting systems. Moreover, a number of topics and research challenges affecting the performance of RF harvesting systems are still unreported, which deserve special attention. To this end, this article starts by providing an overview of the different application domains of RF power harvesting outlining their performance requirements and summarizing the RF power harvesting techniques with their associated power densities. It then comprehensively surveys the available literature on the horizons that affect the performance of RF energy harvesting, taking into account the evaluation metrics, power propagation models, rectenna architectures, and MAC protocols for RF energy harvesting. Finally, it summarizes the available literature associated with RF powered networks and highlights the limitations, challenges, and future research directions by synthesizing the research efforts in the field of RF energy harvesting to progress research in this area.

2.
Sensors (Basel) ; 21(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567627

RESUMEN

LoRa is a low-power and long range radio communication technology designed for low-power Internet of Things devices. These devices are often deployed in remote areas where the end-to-end connectivity provided through one or more gateways may be limited. In this paper, we examine the case where the gateway is not available at all times. As a consequence, the sensing data need to be buffered locally and transmitted as soon as a gateway becomes available. However, due to the Aloha-style transmission policy of current LoRa-based standards, such as the LoRaWAN, delivering a large number of packets in a short period of time by a large number of nodes becomes impossible. To avoid bursts of collisions and expedite data collection, we propose a time-slotted transmission scheduling mechanism. We formulate the data scheduling optimisation problem, taking into account LoRa characteristics, and compare its performance to low complexity heuristics. Moreover, we conduct a set of simulations to show the benefits of synchronous communications on the data collection time and the network performance. The results show that the data collection can reliably be achieved at least 10 times faster compared to an Aloha-based approach for networks with 100 or more nodes. We also develop a proof-of-concept to assess the overhead cost of communicating the schedule to the nodes and we present experimental results.

3.
Sensors (Basel) ; 19(8)2019 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-31014002

RESUMEN

IEEE802.15.4-time slotted channel hopping (TSCH) is a medium access control (MAC) protocol designed to support wireless device networking, offering high reliability and low power consumption, two features that are desirable in the industrial internet of things (IIoT). The formation of an IEEE802.15.4-TSCH network relies on the periodic transmissions of network advertising frames called enhanced beacons (EB). The scheduling of EB transmissions plays a crucial role both in the joining time and in the power consumption of the nodes. The existence of collisions between EB is an important factor that negatively affects the performance. In the worst case, all the neighboring EB transmissions of a node may collide, a phenomenon which we call a full collision. Most of the EB scheduling methods that have been proposed in the literature are fully or partially based on randomness in order to create the EB transmission schedule. In this paper, we initially show that the randomness can lead to a considerable probability of collisions, and, especially, of full collisions. Subsequently, we propose a novel autonomous EB scheduling method that eliminates collisions using a simple technique that does not increase the power consumption. To the best of our knowledge, our proposed method is the first non-centralized EB scheduling method that fully eliminates collisions, and this is guaranteed even if there are mobile nodes. To evaluate our method, we compare our proposal with recent and state-of-the-art non-centralized network-advertisement scheduling methods. Our evaluation does not consider only fixed topology networks, but also networks with mobile nodes, a scenario which has not been examined before. The results of our simulations demonstrate the superiority of our method in terms of joining time and energy consumption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA