Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Pharmacother ; 173: 116420, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471271

RESUMEN

Gut microbiome alterations are associated with various cancers including brain tumours such as glioma and glioblastoma. The gut communicates with the brain via a bidirectional pathway known as the gut-brain axis (GBA) which is essential for maintaining homeostasis. The gut microbiota produces many metabolites including short chain fatty acids (SCFAs) and essential amino acids such as glutamate, glutamine, arginine and tryptophan. Through the modulation of these metabolites the gut microbiome is able to regulate several functions of brain cells, immune cells and tumour cells including DNA methylation, mitochondrial function, the aryl hydrocarbon receptor (AhR), T-cell proliferation, autophagy and even apoptosis. Here, we summarise current findings on gut microbiome with respect to brain cancers, an area of research that is widely overlooked. Several studies investigated the relationship between gut microbiota and brain tumours. However, it remains unclear whether the gut microbiome variation is a cause or product of cancer. Subsequently, a biomarker panel was constructed for use as a predictive, prognostic and diagnostic tool with respect to multiple cancers including glioma and glioblastoma multiforme (GBM). This review further presents the intratumoural microbiome, a fascinating microenvironment within the tumour as a possible treatment target that can be manipulated to maximise effectiveness of treatment via personalised therapy. Studies utilising the microbiome as a biomarker and therapeutic strategy are necessary to accurately assess the effectiveness of the gut microbiome as a clinical tool with respect to brain cancers.


Asunto(s)
Neoplasias Encefálicas , Microbioma Gastrointestinal , Glioblastoma , Humanos , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Biomarcadores/metabolismo , Microambiente Tumoral
2.
Food Sci Nutr ; 9(11): 5946-5958, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34760228

RESUMEN

Fresh-cut fruits and vegetables are becoming particularly popular as healthy fast-food options; however, they present challenges such as accelerated rates of decay and increased risk for contamination when compared to whole produce. Given that food safety must remain paramount for producers and manufacturers, research into novel, natural food preservation solutions which can help to ensure food safety and protect against spoilage is on the rise. In this work, we investigated the potential of using a novel protein hydrolysate, produced by the enzymatic hydrolysis of Pisum sativum (PSH), as a novel bio-preservative and its abilities to reduce populations of Escherichia coli O157:H7 after inoculation on a lettuce leaf. While unhydrolyzed P. sativum proteins show no antimicrobial activity, once digested, and purified, the enzymatically released peptides induced in vitro bactericidal effects on the foodborne pathogen at 8 mg/ml. When applied on an infected lettuce leaf, the PSH significantly reduced the number of bacteria recovered after 2 hr of treatment. PSH may be preferred over other preservation strategies based on its natural, inexpensive, sustainable source, environmentally friendly process, nontoxic nature, good batch to batch consistency, and ability to significantly reduce counts of E. coli both in vitro and in a lettuce leaf.

3.
Microorganisms ; 9(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803499

RESUMEN

Cutibacterium acnes is the most abundant bacterium living in human, healthy and sebum-rich skin sites, such as the face and the back. This bacterium is adapted to this specific environment and therefore could have a major role in local skin homeostasis. To assess the role of this bacterium in healthy skin, this review focused on (i) the abundance of C. acnes in the skin microbiome of healthy skin and skin disorders, (ii) its major contributions to human skin health, and (iii) skin commensals used as probiotics to alleviate skin disorders. The loss of C. acnes relative abundance and/or clonal diversity is frequently associated with skin disorders such as acne, atopic dermatitis, rosacea, and psoriasis. C. acnes, and the diversity of its clonal population, contributes actively to the normal biophysiological skin functions through, for example, lipid modulation, niche competition and oxidative stress mitigation. Compared to gut probiotics, limited dermatological studies have investigated skin probiotics with skin commensal strains, highlighting their unexplored potential.

4.
Front Microbiol ; 10: 2086, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620099

RESUMEN

While the antibiotic era has come and gone, antimicrobial peptides (AMPs) hold promise as novel therapies to treat multidrug resistant (MDR) pathogens in an age where the threat of multidrug resistance escalates worldwide. Here, we report the bactericidal properties of NuriPep 1653, a novel 22 mer and non-modified peptide. NuriPep 1653 was identified within the sequence of the non-antimicrobial P54 protein, which is involved in nutrient reservoir activity in Pisum sativum. Total bacterial clearance of Acinetobacter baumannii cells (1 × 108 cells/mL) was observed using only 4 × MIC (48 µg/mL) of NuriPep 1653 after just 20 min of treatment. We uncovered a synergistic interaction between NuriPep 1653 and another antimicrobial peptide, colistin. The MIC of NuriPep 1653 and colistin dropped from 12 and 8 µg/mL to 2 and 1 µg/mL, respectively, when they were combined. NuriPep 1653 exhibits no cytotoxicity in different human cell lines and has a low propensity to induce bacterial resistance in a colistin resistant clinical isolate of A. baumannii. The existence of these peptides embedded in proteins unearths potentially new classes of antimicrobials with activity against clinically relevant pathogens. Our findings push the boundaries of traditional peptide discovery and represent a leading edge for natural bioactive compounds which may have a common existence in nature but remain unexposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA