RESUMEN
Wadsley-Roth niobium oxide phases have attracted extensive research interest recently as promising battery anodes. We have synthesized the niobium-molybdenum oxide shear phase (Nb, Mo)13 O33 with superior electrochemical Li-ion storage performance, including an ultralong cycling lifespan of at least 15000â cycles. During electrochemical cycling, a reversible single-phase solid-solution reaction with lithiated intermediate solid solutions is demonstrated using in situ X-ray diffraction, with the valence and short-range structural changes of the electrode probed by in situ Nb and Mo K-edge X-ray absorption spectroscopy. This work reveals that the superior stability of niobium molybdenum oxides is underpinned by changes in octahedral distortion during electrochemical reactions, and we report an in-depth understanding of how this stabilizes the oxide structure during cycling with implications for future long-life battery material design.
RESUMEN
Oxides composed of an oxygen framework and interstitial cations are promising cathode materials for lithium-ion batteries. However, the instability of the oxygen framework under harsh operating conditions results in fast battery capacity decay, due to the weak orbital interactions between cations and oxygen (mainly 3d-2p interaction). Here, a robust and endurable oxygen framework is created by introducing strong 4s-2p orbital hybridization into the structure using LiNi0.5 Mn1.5 O4 oxide as an example. The modified oxide delivers extraordinarily stable battery performance, achieving 71.4 % capacity retention after 2000â cycles at 1â C. This work shows that an orbital-level understanding can be leveraged to engineer high structural stability of the anion oxygen framework of oxides. Moreover, the similarity of the oxygen lattice between oxide electrodes makes this approach extendable to other electrodes, with orbital-focused engineering a new avenue for the fundamental modification of battery materials.
RESUMEN
Sluggish kinetics of the CO2 reduction/evolution reactions lead to the accumulation of Li2CO3 residuals and thus possible catalyst deactivation, which hinders the long-term cycling stability of Li-CO2 batteries. Apart from catalyst design, constructing a fluorinated solid-electrolyte interphase is a conventional strategy to minimize parasitic reactions and prolong cycle life. However, the catalytic effects of solid-electrolyte interphase components have been overlooked and remain unclear. Herein, we systematically regulate the compositions of solid-electrolyte interphase via tuning electrolyte solvation structures, anion coordination, and binding free energy between Li ion and anion. The cells exhibit distinct improvement in cycling performance with increasing content of C-N species in solid-electrolyte interphase layers. The enhancement originates from a catalytic effect towards accelerating the Li2CO3 formation/decomposition kinetics. Theoretical analysis reveals that C-N species provide strong adsorption sites and promote charge transfer from interface to *CO22- during discharge, and from Li2CO3 to C-N species during charge, thereby building a bidirectional fast-reacting bridge for CO2 reduction/evolution reactions. This finding enables us to design a C-N rich solid-electrolyte interphase via dual-salt electrolytes, improving cycle life of Li-CO2 batteries to twice that using traditional electrolytes. Our work provides an insight into interfacial design by tuning of catalytic properties towards CO2 reduction/evolution reactions.
RESUMEN
Rechargeable lithium-carbon dioxide (Li-CO2 ) batteries are promising devices for CO2 recycling and energy storage. However, thermodynamically stable and electrically insulating discharge products (DPs) (e.g., Li2 CO3 ) deposited at cathodes require rigorous conditions for completed decomposition, resulting in large recharge polarization and poor battery reversibility. Although progress has been achieved in cathode design and electrolyte optimization, the significance of DPs is generally underestimated. Therefore, it is necessary to revisit the role of DPs in Li-CO2 batteries to boost overall battery performance. Here, a critical and systematic review of DPs in Li-CO2 batteries is reported for the first time. Fundamentals of reactions for formation and decomposition of DPs are appraised; impacts on battery performance including overpotential, capacity, and stability are demonstrated; and the necessity of discharge product management is highlighted. Practical in situ/operando technologies are assessed to characterize reaction intermediates and the corresponding DPs for mechanism investigation. Additionally, achievable control measures to boost the decomposition of DPs are evidenced to provide battery design principles and improve the battery performance. Findings from this work will deepen the understanding of electrochemistry of Li-CO2 batteries and promote practical applications.
RESUMEN
The flow-cell design offers prospect for transition to commercial-relevant high current density CO2 electrolysis. However, it remains to understand the fundamental interplay between the catalyst, and the electrolyte in such configuration toward CO2 reduction performance. Herein, the dramatic influence of electrolyte alkalinity in widening potential window for CO2 electroreduction in a flow-cell system based on SnS nanosheets is reported. The optimized SnS catalyst operated in 1 m KOH achieves a maximum formate Faradaic efficiency of 88 ± 2% at -1.3 V vs reversible hydrogen electrode (RHE) with the current density of ≈120 mA cm-2 . Alkaline electrolyte is found suppressing the hydrogen evolution across all potentials which is particularly dominant at the less negative potentials, as well as CO evolution at more negative potentials. This in turn widens the potential window for formate conversion (>70% across -0.5 to -1.5 V vs RHE). A comparative study to SnOx counterpart indicates sulfur also acts to suppress hydrogen evolution, although electrolyte alkalinity resulting in a greater suppression. The boosting of the electrochemical potential window, along with high current densities in SnS derived catalytic system offers a highly attractive and promising route toward industrial-relevant electrocatalytic production of formate from CO2 .
RESUMEN
Here it was demonstrated that the decoration of gold (Au) with polyaniline is an effective approach in increasing its electrocatalytic reduction of CO2 to CO. The core-shell-structured gold-polyaniline (Au-PANI) nanocomposite delivered a CO2 -to-CO conversion efficiency of 85 % with a high current density of 11.6â mA cm-2 . The polyaniline shell facilitated CO2 adsorption, and the subsequent formation of reaction intermediates on the gold core contributed to the high efficiency observed.
RESUMEN
We propose a facile approach to synthesise ultrathin iron oxyhydroxide nanosheets for use in catalysing the electrochemical oxygen evolution reaction. This two dimensional material lowers the overpotential and provides a platform for further performance enhancement via integration of species such as nickel into an ultrathin nanosheet structure.