Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Transl Med ; 22(1): 175, 2024 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369542

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the leading cancer worldwide. Microbial agents have been considered to contribute to the pathogenesis of different disease. But the underlying relevance between CRC and microbiota remain unclear. METHODS: We dissected the fecal microbiome structure and genomic and transcriptomic profiles of matched tumor and normal mucosa tissues from 41 CRC patients. Of which, the relationship between CRC-associated bacterial taxa and their significantly correlated somatic mutated gene was investigated by exome sequencing technology. Differentially expressed functional genes in CRC were clustered according to their correlation with differentially abundant species, following by annotation with DAVID. The composition of immune and stromal cell types was identified by XCELL. RESULTS: We identified a set of 22 microbial gut species associated with CRC and estimate the relative abundance of KEGG ontology categories. Next, the interactions between CRC-related gut microbes and clinical phenotypes were evaluated. 4 significantly mutated gene: TP53, APC, KRAS, SMAD4 were pointed out and the associations with cancer related microbes were identified. Among them, Fusobacterium nucleatum positively corelated with different host metabolic pathways. Finally, we revealed that Fusobacterium nucleatum modified the tumor immune environment by TNFSF9 gene expression. CONCLUSION: Collectively, our multi-omics data could help identify novel biomarkers to inform clinical decision-making in the detection and diagnosis of CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Transcriptoma/genética , Neoplasias Colorrectales/diagnóstico , Multiómica
2.
Anal Chem ; 95(24): 9244-9251, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37285171

RESUMEN

Identification of α-thalassemia silent carriers is challenging with conventional phenotype-based screening methods. A liquid chromatography tandem mass spectrometry (LC-MS/MS)-based approach may offer novel biomarkers to address this conundrum. In this study, we collected dried blood spot samples from individuals with three α-thalassemia subtypes for biomarker discovery and validation. We observed differential expression patterns of hemoglobin subunits among various α-thalassemia subtypes and normal controls through proteomic profiling of 51 samples in the discovery phase. Then, we developed and optimized a multiple reaction monitoring (MRM) assay to measure all detectable hemoglobin subunits. The validation phase was conducted in a cohort of 462 samples. Among the measured hemoglobin subunits, subunit µ was significantly upregulated in all the α-thalassemia groups with distinct fold changes. The hemoglobin subunit µ exhibits great potential as a novel biomarker for α-thalassemia, especially for silent α-thalassemia. We constructed predictive models based on the concentrations of hemoglobin subunits and their ratios to classify the various subtypes of α-thalassemia. In the binary classification problems of silent α-thalassemia vs normal, non-deletional α-thalassemia vs normal, and deletional α-thalassemia vs normal, the best performance of the models achieved average ROCAUCs of 0.9505, 0.9430, and 0.9976 in the cross-validation, respectively. In the multiclass model, the best performance achieved an average ROCAUC of 0.9290 in cross-validation. The performance of our MRM assay and models demonstrated that the hemoglobin subunit µ would play a vital role in screening silent α-thalassemia in clinical practice.


Asunto(s)
Subunidades de Hemoglobina , Talasemia alfa , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Talasemia alfa/diagnóstico , Proteómica , Biomarcadores
3.
Clin Chem ; 68(12): 1541-1551, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36226750

RESUMEN

BACKGROUND: Traditional phenotype-based screening for ß-globin variant and ß-thalassemia using hematological parameters is time-consuming with low-resolution detection. Development of a MALDI-TOF-MS assay using alternative markers is needed. METHODS: We constructed a MALDI-TOF-MS-based approach for identifying various ß-globin disorders and classifying thalassemia major (TM) and thalassemia intermedia (TI) patients using 901 training samples with known HBB/HBA genotypes. We then validated the accuracy of population screening and clinical classification in 2 separate cohorts consisting of 16 172 participants and 201 ß-thalassemia patients. Traditional methods were used as controls. Genetic tests were considered the gold standard for testing positive specimens. RESULTS: We established a prediction model for identifying different forms of ß-globin disorders in a single MALDI-TOF-MS test based on δ- to ß-globin, γ- to α-globin, γ- to ß-globin ratios, and/or the abnormal globin-chain patterns. Our validation study yielded comparable results of clinical specificity (99.89% vs 99.71%), and accuracy (99.78% vs 99.16%) between the new assay and traditional methods but higher clinical sensitivity for the new method (97.52% vs 88.01%). The new assay identified 22 additional abnormal hemoglobins in 69 individuals including 9 novel ones, and accurately screened for 9 carriers of deletional hereditary persistence of fetal hemoglobin or δß-thalassemia. TM and TI were well classified in 178 samples out of 201 ß-thalassemia patients. CONCLUSIONS: MALDI-TOF-MS is a highly accurate, predictive tool that could be suitable for large-scale screening and clinical classification of ß-globin disorders.


Asunto(s)
Hemoglobinas Anormales , Talasemia beta , Humanos , Globinas beta/genética , Talasemia beta/diagnóstico , Talasemia beta/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Hemoglobina Fetal , Hemoglobinas Anormales/análisis , Proteínas Portadoras
4.
Clin Genet ; 102(6): 548-554, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36029112

RESUMEN

Diamond-Blackfan anaemia (DBA) is an inherited marrow failure disorder characterised by selective erythroid aplasia. Herein, we reported a case of DBA caused by a novel GATA1 gene mutation. The proband manifested normocytic normochromic anaemia, while the parents were asymptomatic. Next-generation sequencing identified a novel de novo mutation at GATA1 initiation codon (GATA1:c.3G>A) in the proband. The mutation led to a shortened GATA1 protein (GATA1s), which caused a reduction in full-length functional GATA1 protein (GATA1fl). This is the first report of GATA1-related DBA patient in the East Asian population, which expanded the mutational spectrum of DBA furthering understanding of its pathogenesis.


Asunto(s)
Anemia de Diamond-Blackfan , Humanos , Anemia de Diamond-Blackfan/genética , Codón Iniciador , Isoformas de Proteínas/genética , Mutación , Factor de Transcripción GATA1/genética
5.
J Am Chem Soc ; 142(26): 11442-11450, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32479068

RESUMEN

Colon cancer is one of the most common cancers with high mortality in humans. Early diagnosis and treatment of colon cancer is of great significance for cancer therapy. Numerous theranostic agents have been developed to detect and kill cancer cells. However, few reports have focused on how these agents control and affect the gene expression of cancer cells in vivo. Herein, three pyridinium-functionalized tetraphenylethylene derivatives, namely, TPE-OM, TPE-H, and TPE-NO2, with electron-donating and electron-withdrawing groups were facilely synthesized as theranostic agents for cell imaging and anticolon cancer therapy. Among these AIE luminogens (AIEgens), TPE-OM with donor and acceptor structure showed the best treatment efficacy for colon cancer through systematic biological evaluation and comparison. Both in vitro cell imaging and in vivo tumor treatment experiments demonstrated that TPE-OM can be utilized as an efficient theranostic agent to diagnose and kill colon cancer cells. Flow cytometric analysis revealed that the cell cycle process was disturbed by TPE-OM in colon cancer cells. Deep insight into the gene level revealed that the expressions of cell-cycle-promoting genes was inhibited upon addition of TPE-OM. This study may open a new venue for unraveling the mechanisms of cancer metastasis.


Asunto(s)
Neoplasias del Colon/diagnóstico por imagen , Electrones , Colorantes Fluorescentes/química , Estilbenos/química , Nanomedicina Teranóstica , Animales , Neoplasias del Colon/tratamiento farmacológico , Teoría Funcional de la Densidad , Células HCT116 , Humanos , Ratones , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/tratamiento farmacológico , Imagen Óptica
6.
Br J Cancer ; 123(6): 1042-1044, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647365

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Br J Cancer ; 122(11): 1673-1685, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32225170

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) are responsible for tumour initiation, metastasis and recurrence. However, the mechanism of CSC formation, maintenance and expansion in colorectal cancer (CRC) remains poorly characterised. METHODS: The role of COP9 signalosome subunit 6 (CSN6) in regulating cancer stemness was evaluated by organoid formation and limited dilution analysis. The role of CSN6-TRIM21-OCT1-ALDH1A1 axis in CSC formation was evaluated in vitro and in vivo. The association of CSN6, TRIM21 and ALDH1A1 expression was validated by a tissue microarray with 267 CRC patients. RESULTS: The results showed that CSN6 is critical for sphere formation and maintaining the growth of patient-derived organoids (PDOs). We characterised the role of CSN6 in regulating cancer stemness, which involves the TRIM21 E3 ubiquitin ligase, transcription factor POU class 2 homeobox 1 (OCT1) and cancer stem cell marker aldehyde dehydrogenase 1 A1 (ALDH1A1). Our data showed that CSN6 facilitates ubiquitin-mediated degradation of TRIM21, which in turn decreases TRIM21-mediated OCT1 ubiquitination and subsequently stabilises OCT1. Consequently, OCT1 stabilisation leads to ALDH1A1expression and promotes cancer stemness. We further showed that the protein expression levels of CSN6, TRIM21 and ALDH1A1 can serve as prognostic markers for human CRC. CONCLUSIONS: In conclusion, we validate a pathway for cancer stemness regulation involving ALDH1A1 levels through the CSN6-TRIM21 axis, which may be utilised as CRC molecular markers and be targeted for therapeutic intervention in cancers.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejo del Señalosoma COP9/metabolismo , Carcinogénesis/metabolismo , Neoplasias Colorrectales/patología , Células Madre Neoplásicas/patología , Ribonucleoproteínas/metabolismo , Carcinogénesis/patología , Neoplasias Colorrectales/metabolismo , Humanos , Células Madre Neoplásicas/metabolismo
8.
Cancer Sci ; 108(7): 1293-1302, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28417530

RESUMEN

Rho GDP-dissociation inhibitor α (RhoGDIα) is an essential regulator for Rho GTPases. Although RhoGDIα may serve as an oncogene in colorectal cancer (CRC), the underlying mechanism is still unclear. We investigated the function, mechanism, and clinical significance of RhoGDIα in CRC progression. We founded that downregulation of RhoGDIα repressed CRC cell proliferation, motility, and invasion. Overexpression of RhoGDIα increased DNA damage response signals at telomeres, and led to telomere shortening in CRC cells, also being validated in 26 pairs of CRC tissues. Mechanistic studies revealed that RhoGDIα could promote telomeric repeat factor 1 (TRF1) expression through the phosphatidylinositol 3-kinase-protein kinase B signal pathway. Moreover, RhoGDIα protein levels were strongly correlated with TRF1 in CRC tissues. A cohort of 297 CRC samples validated the positive relationship between RhoGDIα and TRF1, and revealed that RhoGDIα and TRF1 levels were negatively associated with CRC patients' survival. Taken together, our results suggest that RhoGDIα regulate TRF1 and telomere length and may be novel prognostic biomarkers in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/biosíntesis , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo , Biomarcadores de Tumor/análisis , Western Blotting , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Invasividad Neoplásica/patología , Pronóstico , Modelos de Riesgos Proporcionales , Reacción en Cadena en Tiempo Real de la Polimerasa , Acortamiento del Telómero , Análisis de Matrices Tisulares
9.
Clin Transl Med ; 14(3): e1621, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38468490

RESUMEN

BACKGROUND: NOP2/Sun domain 2 (NSUN2) is one of the important RNA methyltransferases catalyzing 5-methylcytosine (m5C) formation and participates in many critical bioprocesses. However, the roles and underlying molecular mechanisms of NSUN2-mediated m5C modification in colorectal cancer (CRC) remain unclear. METHODS: To explore the NSUN2 expression in CRC, fresh tissue samples were collected and Nsun2 knockout mouse was constructed. In vitro and in vivo functional assays were conducted to assess the role of NSUN2. RNA array and bisulfite sequencing were used to investigate the potential targets. The mechanisms of NSUN2 function on SKIL were identified by m5C-methylated-RNA immunoprecipitation and RNA stability assays. Additionally, tissue microarray analysis was conducted and patient-derived tumour xenograft mouse (PDX) models were used to define the potential therapeutic targets. RESULTS: NSUN2 was highly expressed in CRC and correlated with poor CRC patient survival. Moreover, silencing NSUN2 suppressed CRC tumourigenesis and progression in Nsun2 knockout mouse models. In vitro and in vivo studies suggested that NSUN2 promoted colorectal cancer cell growth. Mechanistically, SKI-like proto-oncogene (SKIL) is positively regulated by NSUN2, and the NSUN2-SKIL axis is clinically relevant to CRC. NSUN2 induced m5C modification of SKIL and stabilized its mRNA, which was mediated by Y-box binding protein 1 (YBX1). Elevated SKIL levels increased transcriptional coactivator with PDZ-binding motif (TAZ) activation. CONCLUSIONS: Our findings highlight the importance of NSUN2 in the initiation and progression of CRC via m5C-YBX1-dependent stabilization of the SKIL transcript, providing a promising targeted therapeutic strategy for CRC.


Asunto(s)
Neoplasias Colorrectales , Metiltransferasas , Animales , Humanos , Ratones , Neoplasias Colorrectales/patología , Péptidos y Proteínas de Señalización Intracelular , Metiltransferasas/genética , Ratones Noqueados , Proteínas Proto-Oncogénicas , ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Cell Biosci ; 13(1): 25, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755301

RESUMEN

With high prevalence and mortality, together with metabolic reprogramming, colorectal cancer is a leading cause of cancer-related death. Metabolic reprogramming gives tumors the capacity for long-term cell proliferation, making it a distinguishing feature of cancer. Energy and intermediate metabolites produced by metabolic reprogramming fuel the rapid growth of cancer cells. Aberrant metabolic enzyme-mediated tumor metabolism is regulated at multiple levels. Notably, tumor metabolism is affected by nutrient levels, cell interactions, and transcriptional and posttranscriptional regulation. Understanding the crosstalk between metabolic enzymes and colorectal carcinogenesis factors is particularly important to advance research for targeted cancer therapy strategies via the investigation into the aberrant regulation of metabolic pathways. Hence, the abnormal roles and regulation of metabolic enzymes in recent years are reviewed in this paper, which provides an overview of targeted inhibitors for targeting metabolic enzymes in colorectal cancer that have been identified through tumor research or clinical trials.

11.
Clin Biochem ; 116: 20-23, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36878345

RESUMEN

BACKGROUND: Thalassemia, one of the most prevalent monogenic diseases worldwide, is caused by an imbalance of α-like and non-α-like globin chain production. Copy number variations, which cause the most common genotype of α-thalassemia, can be detected by multiple diagnostic methods. CASE REPORT: The proband was a 31-year-old female who was diagnosed with microcytic hypochromic anemia by antenatal screening. Hematological analysis and molecular genotyping were conducted on the proband and the proband's family members. Gap-polymerase chain reaction, Sanger sequencing, multiplex ligation-dependent probe amplification, and next-generation sequencing were used to detect potentially pathogenic genes. Familial studies and genetic analyses revealed a novel deletion of 27.2 kb located in the α-globin gene cluster (NC_000016.9: g. 204538_231777delinsTAACA). CONCLUSIONS: We reported a novel α-thalassemia deletion and described the process of molecular diagnosis. The novel deletion extends the thalassemia mutation spectrum, which may be helpful in genetic counseling and clinical diagnosis in the future.


Asunto(s)
Talasemia alfa , Humanos , Femenino , Embarazo , Adulto , Talasemia alfa/diagnóstico , Talasemia alfa/genética , Variaciones en el Número de Copia de ADN , Mutación , Genotipo , Reacción en Cadena de la Polimerasa Multiplex , Globinas alfa/genética
12.
Nat Commun ; 14(1): 4193, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443154

RESUMEN

Gastric cancer (GC), one of the most common malignant tumors in the world, exhibits a rapid metastasis rate and causes high mortality. Diagnostic markers and potential therapeutic targets for GCs are urgently needed. Here we show that Actin-like protein 6 A (ACTL6A), encoding an SWI/SNF subunit, is highly expressed in GCs. ACTL6A is found to be critical for regulating the glutathione (GSH) metabolism pathway because it upregulates γ-glutamyl-cysteine ligase catalytic subunit (GCLC) expression, thereby reducing reactive oxygen species (ROS) levels and inhibiting ferroptosis, a regulated form of cell death driven by the accumulation of lipid-based ROS. Mechanistic studies show that ACTL6A upregulates GCLC as a cotranscription factor with Nuclear factor (erythroid-derived 2)-like 2 (NRF2) and that the hydrophobic region of ACTL6A plays an important role. Our data highlight the oncogenic role of ACTL6A in GCs and indicate that inhibition of ACTL6A or GCLC could be a potential treatment strategy for GCs.


Asunto(s)
Ferroptosis , Neoplasias Gástricas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/genética , Ferroptosis/genética , Factores de Transcripción , Glutatión , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Actinas , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo
13.
Cancer Res ; 83(3): 414-427, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36512632

RESUMEN

Metabolic reprogramming can contribute to colorectal cancer progression and therapy resistance. Identification of key regulators of colorectal cancer metabolism could provide new approaches to improve treatment and reduce recurrence. Here, we demonstrate a critical role for the COP9 signalosome subunit CSN6 in rewiring nucleotide metabolism in colorectal cancer. Transcriptomic analysis of colorectal cancer patient samples revealed a correlation between CSN6 expression and purine and pyrimidine metabolism. A colitis-associated colorectal cancer model established that Csn6 intestinal conditional deletion decreased tumor development and altered nucleotide metabolism. CSN6 knockdown increased the chemosensitivity of colorectal cancer cells in vitro and in vivo, which could be partially reversed with nucleoside supplementation. Isotope metabolite tracing showed that CSN6 loss reduced de novo nucleotide synthesis. Mechanistically, CSN6 upregulated purine and pyrimidine biosynthesis by increasing expression of PHGDH, a key enzyme in the serine synthesis pathway. CSN6 inhibited ß-Trcp-mediated DDX5 polyubiquitination and degradation, which in turn promoted DDX5-mediated PHGDH mRNA stabilization, leading to metabolic reprogramming and colorectal cancer progression. Butyrate treatment decreased CSN6 expression and improved chemotherapy efficacy. These findings unravel the oncogenic role of CSN6 in regulating nucleotide metabolism and chemosensitivity in colorectal cancer. SIGNIFICANCE: CSN6 deficiency inhibits colorectal cancer development and chemoresistance by downregulating PHGDH to block nucleotide biosynthesis, providing potential therapeutic targets to improve colorectal cancer treatment.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Humanos , Complejo del Señalosoma COP9/genética , Complejo del Señalosoma COP9/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Pirimidinas , Nucleótidos , ARN Helicasas DEAD-box
14.
Cell Death Dis ; 13(12): 1049, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526622

RESUMEN

BAF53A, an important subunit of the SWI/SNF epigenetic chromatin regulatory complex, has been implicated as the driver of diverse cancers. However, the role of BAF53A in colorectal cancer (CRC) remains poorly understood. Here, we examined the expression of BAF53A in CRC samples and observed that BAF53A was significantly upregulated in CRC tissues compared with paired adjacent normal tissues. In vitro and in vivo studies suggested that ectopic expression of BAF53A promoted colorectal cancer cell proliferation, colony formation, and tumorigenesis, whereas knockdown of BAF53A hindered these cellular functions. DUSP5 (dual-specificity phosphatase 5), an ERK1/2-specific endogenous phosphatase, was expressed at low levels in CRC. We found a negative correlation between BAF53A and DUSP5 expression in a set of CRC samples. Mechanistic studies revealed that P63 was a potential transcription repressor of DUSP5. BAF53A could interact with P63, decreasing the DUSP5 expression level and subsequently promoting ERK1/2 phosphorylation. Thus, our study provides insights into the applicability of the BAF53A-DUSP5-ERK1/2 axis as a potential therapeutic target in CRC.


Asunto(s)
Proteínas Cromosómicas no Histona , Neoplasias Colorrectales , Fosfatasas de Especificidad Dual , Humanos , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Fosforilación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Cromosómicas no Histona/metabolismo
15.
Metabolites ; 12(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35629914

RESUMEN

Chemoresistance limits treatment outcomes in colorectal cancer (CRC) patients. A dimeric metabolite of indole-3-carbinol, 3,3'-diindolylmethane (DIM) is abundant in cruciferous vegetables and has shown anticancer efficacy. The role of DIM in regulating chemosensitivity in CRC remains unknown. In this study, we demonstrated that DIM treatment inhibits the malignant progression of CRC. RNA sequencing indicated that pyrimidine synthesis genes are attenuated by DIM treatment. Stable 13C-labeled glucose tracing revealed that DIM inhibits de novo pyrimidine biosynthesis in CRC. DIM increases 5-FU cytotoxicity in CRC via regulation of the expression of pyrimidine metabolism-related genes. DIM synergizes with 5-FU to enhance its inhibitory effects on CRC both in vivo and in vitro. Our results suggest that DIM improves the therapeutic outcomes of FU-based chemotherapy in CRCs by inhibiting pyrimidine metabolism, identifying a new strategy for clinical therapy.

16.
Sci Transl Med ; 13(582)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627485

RESUMEN

Radiation proctopathy (RP) is characterized by inflammation of colorectal tissue and is a common complication of radiation therapy for pelvic malignancies with high incidence but lacking effective treatment. Here, we found that platelet-derived growth factor C (PDGF-C) and fibrosis markers were up-regulated in tissue samples from patients with RP and in rectal tissues after irradiation in a mouse model of RP. Genetic deletion of Pdgf-c in mice ameliorated RP-induced injuries. Genome-wide gene expression profiling and in vitro assays revealed that the promotive effect of PDGF-C in RP development was mediated by activation of PDGF receptors (PDGFRs) and C-X-C motif chemokine receptor 4, a proinflammatory chemokine regulated by transcription factor ETS variant transcription factor 1. Treatment with crenolanib, a selective inhibitor of PDGFRs, prevented or reduced RP in mice after irradiation. These results reveal that inhibition of PDGF-C signaling may have therapeutic value for the treatment of RP.


Asunto(s)
Linfocinas , Factor de Crecimiento Derivado de Plaquetas , Traumatismos por Radiación/terapia , Recto/patología , Animales , Humanos , Ratones , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Recto/efectos de la radiación , Transducción de Señal
17.
Mol Pharm ; 7(3): 786-94, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20232902

RESUMEN

We, and others, have observed that the structure of cationic lipids appears to have a significant effect on the transfection efficacy of optimized nucleic acid/cationic lipid complexes (lipoplexes) used for in vitro and in vivo gene delivery and expression. Although there are many in vitro comparisons of lipid reagents for gene delivery, few comparisons have been made in vivo. We previously reported the effects of changes in hydrophobic domain chain length and chain asymmetry, changes in headgroup composition, and counterion exchange. We have observed in our own work over many years the apparent superiority of asymmetric versus symmetric hydrocarbon domains for otherwise similar lipids. In this investigation we use in vivo whole animal brain imaging to evaluate the contribution of symmetric versus asymmetric hydrophobic domains on what we previously determined to be optimal chain lengths for in vitro transfections. We specifically investigated several glycerol-based lipids; however, the rare reports of asymmetric non-glycerol-based lipids also support our observations. We found that asymmetric, two-chain cationic lipids of 14 to 18 carbons perform significantly better in vivo, as analyzed by whole animal imaging, than the paired symmetric lipids.


Asunto(s)
Transfección , Animales , Encéfalo/metabolismo , Terapia Genética , Vectores Genéticos , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/química , Mediciones Luminiscentes , Espectroscopía de Resonancia Magnética , Ratones , Ácidos Nucleicos/química
18.
Adv Sci (Weinh) ; 7(20): 2000681, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33101846

RESUMEN

Forkhead-Box Class O 4 (FOXO4) is involved in critical biological functions, but its response to EGF-PKB/Akt signal regulation is not well characterized. Here, it is reported that FOXO4 levels are downregulated in response to EGF treatment, with concurrent elevation of COP9 Signalosome subunit 6 (CSN6) and E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1) levels. Mechanistic studies show that CSN6 binds and regulates FOXO4 stability through enhancing the E3 ligase activity of COP1, and that COP1 directly interacts with FOXO4 through a VP motif on FOXO4 and accelerates the ubiquitin-mediated degradation of FOXO4. Metabolomic studies demonstrate that CSN6 expression leads to serine and glycine production. It is shown that FOXO4 directly binds and suppresses the promoters of serine-glycine-one-carbon (SGOC) pathway genes, thereby diminishing SGOC metabolism. Evidence shows that CSN6 can regulate FOXO4-mediated SGOC gene expression. Thus, these data suggest a link of CSN6-FOXO4 axis and ser/gly metabolism. Further, it is shown that CSN6-COP1-FOXO4 axis is deregulated in cancer and that the protein expression levels of CSN6 and FOXO4 can serve as prognostic markers for cancers. The results illustrate a pathway regulation of FOXO4-mediated serine/glycine metabolism through the function of CSN6-COP1 axis. Insights into this pathway may be strategically designed for therapeutic intervention in cancers.

19.
Cell Res ; 30(2): 163-178, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31772275

RESUMEN

The Serine-Glycine-One-Carbon (SGOC) pathway is pivotal in multiple anabolic processes. Expression levels of SGOC genes are deregulated under tumorigenic conditions, suggesting participation of oncogenes in deregulating the SGOC biosynthetic pathway. However, the underlying mechanism remains elusive. Here, we identified that Interleukin enhancer-binding factor 3 (ILF3) is overexpressed in primary CRC patient specimens and correlates with poor prognosis. ILF3 is critical in regulating the SGOC pathway by directly regulating the mRNA stability of SGOC genes, thereby increasing SGOC genes expression and facilitating tumor growth. Mechanistic studies showed that the EGF-MEK-ERK pathway mediates ILF3 phosphorylation, which hinders E3 ligase speckle-type POZ protein (SPOP)-mediated poly-ubiquitination and degradation of ILF3. Significantly, combination of SGOC inhibitor and the anti-EGFR monoclonal antibody cetuximab can hinder the growth of patient-derived xenografts that sustain high ERK-ILF3 levels. Taken together, deregulation of ILF3 via the EGF-ERK signaling plays an important role in systemic serine metabolic reprogramming and confers a predilection toward CRC development. Our findings indicate that clinical evaluation of SGOC inhibitor is warranted for CRC patients with ILF3 overexpression.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Serina/biosíntesis , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Glicina/metabolismo , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Unión Proteica , Estabilidad Proteica , Estabilidad del ARN/genética , Especificidad por Sustrato , Análisis de Supervivencia , Ubiquitina-Proteína Ligasas/metabolismo
20.
Mol Ther ; 16(11): 1857-64, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18728638

RESUMEN

We previously showed that a vector:lipid delivery system, comprised of a plasmid DNA vector and cationic lipid (lipoplex), when injected into the cerebrospinal fluid (CSF) of rats can deliver reporter genes in vivo efficiently and with widespread expression to the Central Nervous System (CNS). To further characterize this delivery system, we now present experiments that demonstrate the in vivo time-to-peak expression of the reporter gene, firefly luciferase. We infused a formulated lipoplex containing the lipid MLRI [dissymmetric myristoyl (14:0) and lauroyl (12:1) rosenthal inhibitor-substituted compound formed from the tetraalkylammonium glycerol-based DORI] and pNDluc, a luciferase vector, into CSF in the cisterna magna (CM) of the rat. Luciferase activity was followed over time by bioluminescence imaging after injection of luciferin. Our results show that luciferase activity in the CNS of rats is widespread, peaks 72 hours after injection into CM and can be detected in vivo for at least 7-10 days after peak expression. We further show that in contrast to injection into CSF, enzyme activity is not widely distributed after injection of the vector into brain parenchyma, emphasizing the importance of CSF delivery to achieve widespread vector distribution. Finally, we confirm the distribution of firefly luciferase in brain by immunohistochemical staining from an animal that was euthanized at the peak of enzyme expression.


Asunto(s)
Sistema Nervioso Central/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Cisterna Magna , Portadores de Fármacos , Técnicas de Transferencia de Gen , Genes Reporteros , Lípidos , Luciferasas de Luciérnaga/biosíntesis , Luciferasas de Luciérnaga/líquido cefalorraquídeo , Luciferasas de Luciérnaga/genética , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA