Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nutr ; 154(2): 535-542, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38072153

RESUMEN

BACKGROUND: Intrauterine growth restriction (IUGR) resulted in high mortality and many physiological defects of piglets, causing huge economic loss in the swine industry. Lactobacillus amylovorus (L. amylovorus) was identified as one of the main differential bacteria between IUGR and normal piglets. However, the effects of L. amylovorus on the growth performance and intestinal health in IUGR piglets remained unclear. OBJECTIVES: This study aimed to investigate the promoting effects of L. amylovorus Mafic1501, a new strain isolated from normal piglets, on the growth performance and intestinal barrier functions in IUGR piglets. METHODS: Newborn mice or piglets were assigned into 3 groups: CON (normal birth weight, control), IUGR (low birth weight), and IUGR+L. amy (low birth weight), administered with sterile saline or L. amylovorus Mafic1501, respectively. Growth performance, lactose content in the digesta, intestinal lactose transporter, and barrier function parameters were profiled. IPEC-J2 cells were cultured to verify the effects of L. amylovorus Mafic1501 on lactose utilization and intestinal barrier functions. RESULTS: L. amylovorus Mafic1501 elevated body weight and average daily gain of IUGR mice and piglets (P < 0.05). The lactose content in the ileum was decreased, whereas gene expression of glucose transporter 2 (GLUT2) was increased by L. amylovorus Mafic1501 in IUGR piglets during suckling period (P < 0.05). Besides, L. amylovorus Mafic1501 promoted intestinal barrier functions by increasing the villus height and relative gene expressions of tight junctions (P < 0.05). L. amylovorus Mafic1501 and its culture supernatant decreased the lactose level in the medium and upregulated gene expressions of transporter GLUT2 and tight junction protein Claudin-1 of IPEC-J2 cells (P < 0.05). CONCLUSION: L. amylovorus Mafic1501 improved the growth performance of IUGR piglets by promoting the lactose utilization in small intestine and enhancing intestinal barrier functions. Our results provided the new evidence of L. amylovorus Mafic1501 for its application in the swine industry.


Asunto(s)
Retardo del Crecimiento Fetal , Lactobacillus acidophilus , Femenino , Humanos , Animales , Porcinos , Ratones , Retardo del Crecimiento Fetal/metabolismo , Lactosa/farmacología , Lactosa/metabolismo , Peso al Nacer , Funcion de la Barrera Intestinal , Intestino Delgado/metabolismo , Animales Recién Nacidos
2.
Vet Sci ; 9(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36548829

RESUMEN

This study was conducted to explore the effects of the joint application of Lactobacillus plantarum and Bacillus subtilis on growth performance, immune function, antioxidant capacity, intestinal integrity, and gut microbiota composition in weaned piglets. The piglets were allocated randomly into 4 dietary groups, which were a control diet (NC), NC + 150 ppm mucilage sulfate (PC), and 3 additional diets containing 1 kg/t (LT), 1.5 kg/t (MT), or 2 kg/t (HT) mixture of Lactobacillus plantarum and Bacillus subtilis, respectively. Results showed that joint application of Lactobacillus plantarum and Bacillus subtilis increased ADFI and ADG of weaned piglets in d 14~28 and d 28~42 (p < 0.05), and decreased serum concentrations of DAO, IL-1ß, TNF-α, and IL-2. The LT group increased jejunal and colonic sIgA contents compared with the PC group (p < 0.05). Groups of MT and HT increased colonic mRNA expression of host defense peptides and tight junction proteins compared with the NC and PC groups. The joint application of Lactobacillus plantarum and Bacillus subtilis increased the abundance of colonic Lactobacillus compared with NC and PC groups (p < 0.10). In conclusion, the joint application of Lactobacillus plantarum and Bacillus subtilis as an antibiotics alternative improved growth performance via promoting immune function and intestinal integrity of weaned piglets.

3.
Antioxidants (Basel) ; 11(9)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36139824

RESUMEN

This study was conducted to evaluate the effects of 25-hydroxyvitamin D3 (25(OH)VD3) and Vitamin D3 (VD3) supplemented in the diet of weaned piglets on their growth performance, bone quality, intestinal integrity, immune function and antioxidant capacity. A total of 192 weaned piglets were allocated into four groups and they were fed a control diet containing 2000 IU VD3 (negative control, NC), NC + 100 ppm colistin sulfate (positive control, PC), NC + 2000 IU VD3 (VD3) and NC + 2000 IU 25(OH)VD3 (25(OH)VD3). The results showed that 25(OH)VD3 improved the growth performance, bone quality and antioxidase activity of piglets compared with the other groups. Meanwhile, 25(OH)VD3 up-regulated ileal mRNA expressions of tight junction proteins and host defense peptides. The VD3 group had an increased intestinal sIgA content and mRNA expression of pBD-1 compared with the NC group. Both groups of VD3 and 25(OH)VD3 altered the microbial ß-diversity compared with the NC group, and 25(OH)VD3 increased ileal concentrations of acetate and butyrate. In conclusion, our findings indicated that a regular dosage of 2000 IU VD3 in the weaned piglets' diet did not achieve optimal antioxidant capacity and immune function. 25(OH)VD3 had better growth performance than VD3 at the same inclusion level, which is associated with the improved intestinal integrity and antioxidant capacity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA