Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biomed Inform ; 134: 104190, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36058522

RESUMEN

Electronic Health Records (EHRs) contain rich clinical data collected at the point of the care, and their increasing adoption offers exciting opportunities for clinical informatics, disease risk prediction, and personalized treatment recommendation. However, effective use of EHR data for research and clinical decision support is often hampered by a lack of reliable disease labels. To compile gold-standard labels, researchers often rely on clinical experts to develop rule-based phenotyping algorithms from billing codes and other surrogate features. This process is tedious and error-prone due to recall and observer biases in how codes and measures are selected, and some phenotypes are incompletely captured by a handful of surrogate features. To address this challenge, we present a novel automatic phenotyping model called MixEHR-Guided (MixEHR-G), a multimodal hierarchical Bayesian topic model that efficiently models the EHR generative process by identifying latent phenotype structure in the data. Unlike existing topic modeling algorithms wherein the inferred topics are not identifiable, MixEHR-G uses prior information from informative surrogate features to align topics with known phenotypes. We applied MixEHR-G to an openly-available EHR dataset of 38,597 intensive care patients (MIMIC-III) in Boston, USA and to administrative claims data for a population-based cohort (PopHR) of 1.3 million people in Quebec, Canada. Qualitatively, we demonstrate that MixEHR-G learns interpretable phenotypes and yields meaningful insights about phenotype similarities, comorbidities, and epidemiological associations. Quantitatively, MixEHR-G outperforms existing unsupervised phenotyping methods on a phenotype label annotation task, and it can accurately estimate relative phenotype prevalence functions without gold-standard phenotype information. Altogether, MixEHR-G is an important step towards building an interpretable and automated phenotyping system using EHR data.


Asunto(s)
Registros Electrónicos de Salud , Informática Médica , Algoritmos , Teorema de Bayes , Fenotipo
2.
Sci Rep ; 12(1): 17868, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284225

RESUMEN

The rapid growth of electronic health record (EHR) datasets opens up promising opportunities to understand human diseases in a systematic way. However, effective extraction of clinical knowledge from EHR data has been hindered by the sparse and noisy information. We present Graph ATtention-Embedded Topic Model (GAT-ETM), an end-to-end taxonomy-knowledge-graph-based multimodal embedded topic model. GAT-ETM distills latent disease topics from EHR data by learning the embedding from a constructed medical knowledge graph. We applied GAT-ETM to a large-scale EHR dataset consisting of over 1 million patients. We evaluated its performance based on topic quality, drug imputation, and disease diagnosis prediction. GAT-ETM demonstrated superior performance over the alternative methods on all tasks. Moreover, GAT-ETM learned clinically meaningful graph-informed embedding of the EHR codes and discovered interpretable and accurate patient representations for patient stratification and drug recommendations. GAT-ETM code is available at https://github.com/li-lab-mcgill/GAT-ETM .


Asunto(s)
Registros Electrónicos de Salud , Conocimiento , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA