Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35889333

RESUMEN

Cherry is a fleshy drupe, and it is grown in temperate regions of the world. It is perishable, and several biotic and abiotic factors affect its yield. During April-May 2021, a severe fruit rot of cherry was observed in Swat and adjacent areas. Diseased fruit samples were collected, and the disease-causing pathogen was isolated on PDA. Subsequent morphological, microscopic, and molecular analyses identified the isolated pathogen as Aspergillus flavus. For the control of the fruit rot disease of cherry, iron oxide nanoparticles (Fe2O3 NPs) were synthesized in the leaf extract of Calotropis procera and characterized. Fourier transform infrared (FTIR) spectroscopy of synthesized Fe2O3 NPs showed the presence of capping and stabilizing agents such as alcohols, aldehydes, and halo compounds. X-ray diffraction (XRD) analysis verified the form and size (32 nm) of Fe2O3 NPs. Scanning electron microscopy (SEM) revealed the spinal-shaped morphology of synthesized Fe2O3 NPs while X-ray diffraction (EDX) analysis displayed the occurrence of main elements in the samples. After successful preparation and characterization of NPs, their antifungal activity against A. flavus was determined by poison technique. Based on in vitro and in vivo antifungal activity analyses, it was observed that 1.0 mg/mL concentration of Fe2O3 can effectively inhibit the growth of fungal mycelia and decrease the incidence of fruit rot of cherry. The results confirmed ecofriendly fungicidal role of Fe2O3 and suggested that their large-scale application in the field to replace toxic chemical fungicides.


Asunto(s)
Calotropis , Nanopartículas del Metal , Nanopartículas , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Frutas , Nanopartículas del Metal/química , Nanopartículas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
2.
Micromachines (Basel) ; 13(9)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36144084

RESUMEN

Lychee (Litchi chinensis Sonn.) is a famous fruit species of tropical and subtropical regions of the world and many biotic and abiotic stresses affect its yield. In this study, lychee fruit rot has been observed and its incidence has been controlled by using zinc oxide nanoparticles (ZnO NPs). Diseased lychee fruits were collected and diagnosed to identify disease-causing pathogens. Morphological appearance, microscopic observation, and sequence analysis of the amplified ITS region identified this isolated pathogen as Aspergillus niger. To control this problem, ZnO NPs were prepared in the leaf extract of Azadirachta indica. Before their antifungal activity, ZnO NPs were characterized using sophisticated approaches. FTIR revealed the presence of reducing and stabilizing molecules on ZnO NPs including alcohol, carboxylic acid, alkyl halide, amine, and alkyl halide. Crystalline nature and average size (29.024 nm) of synthesized ZnO NPs were described by X-ray diffraction. EDX analysis depicted the mass percentage of zinc (30.15%) and oxygen (14.90%). SEM analysis displayed the irregular shape of nanoparticles and confirmed the nano-size of ZnO NPs. Maximum mycelial growth inhibition (70.5%) was observed at 1.0 mg/mL concentration of ZnO NPs in vitro. In in-vivo disease-control analysis, maximum control of lychee fruit rot disease was observed at the same concentration. These results reveal the potential use of these ZnO NPs on a larger scale to replace hazardous chemical fungicides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA