Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 16(5): 558-564, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27992418

RESUMEN

Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver-gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.

2.
J Am Chem Soc ; 137(10): 3470-3, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25746682

RESUMEN

While it has long been known that different types of support oxides have different capabilities to anchor metals and thus tailor the catalytic behavior, it is not always clear whether the support is a mere carrier of the active metal site, itself not participating directly in the reaction pathway. We report that catalytically similar single-atom-centric Pt sites are formed by binding to sodium ions through -O ligands, the ensemble being equally effective on supports as diverse as TiO2, L-zeolites, and mesoporous silica MCM-41. Loading of 0.5 wt % Pt on all of these supports preserves the Pt in atomic dispersion as Pt(II), and the Pt-O(OH)x- species catalyzes the water-gas shift reaction from ∼120 to 400 °C. Since the effect of the support is "indirect," these findings pave the way for the use of a variety of earth-abundant supports as carriers of atomically dispersed platinum for applications in catalytic fuel-gas processing.

3.
J Am Chem Soc ; 136(8): 3238-45, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24502260

RESUMEN

We report on the direct promotional effect of sodium on the water-gas shift activity of platinum supported on oxygen-free multiwalled carbon nanotubes. Whereas the Na-free Pt catalysts are shown to be completely inactive, the addition of sodium is found to improve the water-gas shift activity to levels comparable to those obtained with highly active Pt catalysts on metal oxide supports. The structure and morphology of the catalyst surface was followed using aberration-corrected HAADF-STEM, which showed that atomically dispersed platinum species are stabilized by the addition of sodium. In situ atmospheric-pressure X-ray photoelectron spectroscopy (AP-XPS) experiments demonstrated that oxidized platinum Pt-OHx contributions in the Pt 4f signal are higher in the presence of sodium, providing evidence for a previously reported active-site structure of the form Pt-Nax-Oy-(OH)z. Pt remained oxidized in all redox experiments, even when a H2-rich gas mixture was used, but the extent of its oxidation followed the oxidation potential of the gas. These findings offer new insights into the nature of the active platinum-based site for the water-gas shift reaction. A strong inhibitory effect of hydrogen was observed on the reaction kinetics, effectively raising the apparent activation energy from 70 ± 5 kJ/mol (in product-free gas) to 105 ± 7 kJ/mol (in full reformate gas). Increased hydrogen uptake was observed on these materials when both Pt and Na were present on the catalyst, suggesting that hydrogen desorption might limit the water-gas shift reaction rate under such conditions.

4.
Phys Chem Chem Phys ; 15(29): 12187-96, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23793350

RESUMEN

We report a novel synthesis of nanoparticle Pd-Cu catalysts, containing only trace amounts of Pd, for selective hydrogenation reactions. Pd-Cu nanoparticles were designed based on model single atom alloy (SAA) surfaces, in which individual, isolated Pd atoms act as sites for hydrogen uptake, dissociation, and spillover onto the surrounding Cu surface. Pd-Cu nanoparticles were prepared by addition of trace amounts of Pd (0.18 atomic (at)%) to Cu nanoparticles supported on Al2O3 by galvanic replacement (GR). The catalytic performance of the resulting materials for the partial hydrogenation of phenylacetylene was investigated at ambient temperature in a batch reactor under a head pressure of hydrogen (6.9 bar). The bimetallic Pd-Cu nanoparticles have over an order of magnitude higher activity for phenylacetylene hydrogenation when compared to their monometallic Cu counterpart, while maintaining a high selectivity to styrene over many hours at high conversion. Greater than 94% selectivity to styrene is observed at all times, which is a marked improvement when compared to monometallic Pd catalysts with the same Pd loading, at the same total conversion. X-ray photoelectron spectroscopy and UV-visible spectroscopy measurements confirm the complete uptake and alloying of Pd with Cu by GR. Scanning tunneling microscopy and thermal desorption spectroscopy of model SAA surfaces confirmed the feasibility of hydrogen spillover onto an otherwise inert Cu surface. These model studies addressed a wide range of Pd concentrations related to the bimetallic nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA