RESUMEN
The vitronectin receptor integrin αVß5 can reside in two distinct adhesion structures - focal adhesions (FAs) and flat clathrin lattices (FCLs). Here, we investigate the mechanism that regulates the subcellular distribution of ß5 in keratinocytes and show that ß5 has approximately 7- and 5-fold higher affinity for the clathrin adaptors ARH (also known as LDLRAP1) and Numb, respectively, than for the talin 1 (TLN1); all proteins that bind to the membrane-proximal NPxY motif of the ß5 cytoplasmic domain. Using mass spectrometry, we identified ß5 interactors, including the Rho GEFs p115Rho-GEF and GEF-H1 (also known as ARHGEF1 and ARHGEF2, respectively), and the serine protein kinase MARK2, depletion of which diminishes the clustering of ß5 in FCLs. Replacement of two serine residues (S759 and S762) in the ß5 cytoplasmic domain with phospho-mimetic glutamate residues causes a shift in the localization of ß5 from FAs into FCLs without affecting the interactions with MARK2, p115Rho-GEF or GEF-H1. Instead, we demonstrate that changes in the actomyosin-based cellular contractility by ectopic expression of activated Rho or disruption of microtubules regulates ß5 localization. Finally, we present evidence that ß5 in either FAs or FCLs functions to promote adhesion to vitronectin, cell spreading, and proliferation.
Asunto(s)
Clatrina , Receptores de Vitronectina , Adhesión Celular/fisiología , Proliferación Celular , Clatrina/metabolismo , Adhesiones Focales/metabolismo , Receptores de Vitronectina/metabolismo , Serina/metabolismoRESUMEN
Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin-containing focal adhesions and cadherin-containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin-containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin-enriched microdomains. This review discusses mechanotransduction by multiple integrin- and cadherin-based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment.
Asunto(s)
Uniones Adherentes , Mecanotransducción Celular , Cadherinas , Adhesión Celular , Citoesqueleto , Humanos , IntegrinasRESUMEN
The family of integrin transmembrane receptors is essential for the normal function of multicellular organisms by facilitating cell-extracellular matrix adhesion. The vitronectin-binding integrin αVß5 localizes to focal adhesions (FAs) as well as poorly characterized flat clathrin lattices (FCLs). Here, we show that, in human keratinocytes, αVß5 is predominantly found in FCLs, and formation of the αVß5-containing FCLs requires the presence of vitronectin as ligand, Ca2+, and the clathrin adaptor proteins ARH (also known as LDLRAP1), Numb and EPS15/EPS15L1. Integrin chimeras, containing the extracellular and transmembrane domains of ß5 and the cytoplasmic domains of ß1 or ß3, almost exclusively localize in FAs. Interestingly, lowering actomyosin-mediated contractility promotes integrin redistribution to FLCs in an integrin tail-dependent manner, while increasing cellular tension favors αVß5 clustering in FAs. Our findings strongly indicate that clustering of integrin αVß5 in FCLs is dictated by the ß5 subunit cytoplasmic domain, cellular tension and recruitment of specific adaptor proteins to the ß5 subunit cytoplasmic domains.
Asunto(s)
Clatrina/metabolismo , Receptores de Vitronectina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calcio/metabolismo , Células Cultivadas , Adhesiones Focales/metabolismo , Humanos , Queratinocitos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vitronectina/metabolismoRESUMEN
Integrins mediate cell adhesion by connecting the extracellular matrix to the intracellular cytoskeleton and orchestrate signal transduction in response to chemical and mechanical stimuli by interacting with many cytoplasmic proteins. We used BioID to interrogate the interactomes of ß1 and ß3 integrins in epithelial cells and identified PEAK1 as an interactor of the RGD-binding integrins α5ß1, αVß3, and αVß5 in focal adhesions. We demonstrate that the interaction between integrins and PEAK1 occurs indirectly through Tensin3, requiring both the membrane-proximal NPxY motif on the integrin ß tail and binding of the SH2 domain of Tensin3 to phosphorylated Tyr-635 on PEAK1. Phosphorylation of Tyr-635 is mediated by Src and regulates cell migration. Additionally, we found that Shc1 localizes in focal adhesions in a PEAK1 phosphorylated Tyr-1188-dependent fashion. Besides binding Shc1, PEAK1 also associates with a protein cluster that mediates late EGFR/Shc1 signaling. We propose a model in which PEAK1 binds Tensin3 and Shc1 to converge integrin and growth factor receptor signal transduction.
Asunto(s)
Adhesión Celular , Integrinas , Proteínas Tirosina Quinasas , Tensinas , Movimiento Celular , Adhesiones Focales/metabolismo , Humanos , Integrina beta3/metabolismo , Integrinas/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Tensinas/metabolismoRESUMEN
Hemidesmosomes are specialized cell-matrix adhesion structures that are associated with the keratin cytoskeleton. Although the adhesion function of hemidesmosomes has been extensively studied, their role in mechanosignaling and transduction remains largely unexplored. Here, we show that keratinocytes lacking hemidesmosomal integrin α6ß4 exhibit increased focal adhesion formation, cell spreading, and traction-force generation. Moreover, disruption of the interaction between α6ß4 and intermediate filaments or laminin-332 results in similar phenotypical changes. We further demonstrate that integrin α6ß4 regulates the activity of the mechanosensitive transcriptional regulator YAP through inhibition of Rho-ROCK-MLC- and FAK-PI3K-dependent signaling pathways. Additionally, increased tension caused by impaired hemidesmosome assembly leads to a redistribution of integrin αVß5 from clathrin lattices to focal adhesions. Our results reveal a novel role for hemidesmosomes as regulators of cellular mechanical forces and establish the existence of a mechanical coupling between adhesion complexes.