Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(24): 10776-10785, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838101

RESUMEN

Rivers have been recognized as the primary conveyors of microplastics to the oceans, and seaward transport flux of riverine microplastics is an issue of global attention. However, there is a significant discrepancy in how microplastic concentration is expressed in field occurrence investigations (number concentration) and in mass flux (mass concentration). Of urgent need is to establish efficient conversion models to correlate these two important paradigms. Here, we first established an abundant environmental microplastic dataset and then employed a deep neural residual network (ResNet50) to successfully separate microplastics into fiber, fragment, and pellet shapes with 92.67% accuracy. We also used the circularity (C) parameter to represent the surface shape alteration of pellet-shaped microplastics, which always have a more uneven surface than other shapes. Furthermore, we added thickness information to two-dimensional images, which has been ignored by most prior research because labor-intensive processes were required. Eventually, a set of accurate models for microplastic mass conversion was developed, with absolute estimation errors of 7.1, 3.1, 0.2, and 0.9% for pellet (0.50 ≤ C < 0.75), pellet (0.75 ≤ C ≤ 1.00), fiber, and fragment microplastics, respectively; environmental samples have validated that this set is significantly faster (saves ∼2 h/100 MPs) and less biased (7-fold lower estimation errors) compared to previous empirical models.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Ríos/química
2.
J Hazard Mater ; 476: 134999, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38925055

RESUMEN

Synthetic fibrous textiles are ubiquitous plastic commodities in everyday existence. Nevertheless, there exists a dearth of understanding regarding their environmental occurrence and the releasing capacities of associated additives. In this study, ten additives were determined in twenty-eight kinds of daily used plastic products including face masks, synthetic clothing, and food containers. Our results revealed that a typical kind of fibrous plastic, face masks, contained a greater variety of additives with UV stabilizers in particular, when compared to other plastic commodities. The above phenomena triggered our field investigation for the occurrence and release potentials of face mask fibers and the co-existing UV stabilizers into the environment. We further collected 114 disposed masks from coastal areas and analyzed their UV stabilizer concentrations. Results showed that the abundance of littered face masks ranged from 40-1846 items/km2 along the Yangtze Estuary, China; and UV stabilizers were of 0.3 ± 0.7 ng/g and 0.7 ± 1.7 ng/g in main bodies and ear ropes, respectively. The UV stabilizer concentrations in the field collected masks were only ∼7 % of their new counterparts, implying their potential leaching after disposal. By simulating the weathering scenario, we predict that a substantial amount of microplastics, with 1.1 × 1010 polypropylene fibers and 3.7 × 1010 polyester fibers, are probably be released daily into the coastal environment after face masks disposal; whereas the accompanied leaching amount of UV stabilizers was relatively modest under the current scenario.


Asunto(s)
Máscaras , Microplásticos , Microplásticos/análisis , Textiles/análisis , China , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Monitoreo del Ambiente , Plásticos/química
3.
J Hazard Mater ; 448: 130856, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36753910

RESUMEN

Microplastic pollution has raised global concern for its hazards to biota. To determine the direct impact of microplastics during their contact with fish, we exposed goldfish (Carassius auratus) to 100 and 1000 items/L waterborne microplastic fibers in the short- and long-term. In the presence of 1000 items/L of microplastic fibers, the coughing behavior of fish increased significantly after 2 h of exposure. Predatory behaviors decreased significantly by 53.0% after 45 d of exposure, and the reduction in daily food intake was negatively related to exposure duration in the 1000 items/L group. In addition, microplastic fibers stimulated dynamic mucus secretion across different fish tissues during the different processes evaluated in this study, with 30.0% and 62.9% overall increases in the secretory capacity of mucus cells in the 100 and 1000 items/L groups, respectively. These behavioral and histological alterations were derived from the ventilation, feeding, and swimming processes of goldfish. We regarded these changes as process-oriented impacts, suggesting the effects of microplastics on fish and how fish cope with microplastics.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Peces , Conducta Predatoria , Monitoreo del Ambiente
4.
Nat Commun ; 14(1): 7898, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036501

RESUMEN

Airborne microplastics (MPs) can undergo long range transport to remote regions. Yet there is a large knowledge gap regarding the occurrence and burden of MPs in the marine boundary layer, which hampers comprehensive modelling of their global atmospheric transport. In particular, the transport efficiency of MPs with different sizes and morphologies remains uncertain. Here we show a hemispheric-scale analysis of airborne MPs along a cruise path from the mid-Northern Hemisphere to Antarctica. We present the inaugural measurements of MPs concentrations over the Southern Ocean and interior Antarctica and find that MPs fibers are transported more efficiently than MPs fragments along the transect, with the transport dynamics of MPs generally similar to those of non-plastic particles. Morphology is found to be the dominant factor influencing the hemispheric transport of MPs to remote Antarctic regions. This study underlines the importance of long-range atmospheric transport in MPs cycling dynamics in the environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA