Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 287(26): 22184-95, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22514275

RESUMEN

Overcoming remyelination failure is a major goal of new therapies for demyelinating diseases like multiple sclerosis. LINGO-1, a key negative regulator of myelination, is a transmembrane signaling protein expressed in both neurons and oligodendrocytes. In neurons, LINGO-1 is an integral component of the Nogo receptor complex, which inhibits axonal growth via RhoA. Because the only ligand-binding subunit of this complex, the Nogo receptor, is absent in oligodendrocytes, the extracellular signals that inhibit myelination through a LINGO-1-mediated mechanism are unknown. Here we show that LINGO-1 inhibits oligodendrocyte terminal differentiation through intercellular interactions and is capable of a self-association in trans. Consistent with previous reports, overexpression of full-length LINGO-1 inhibited differentiation of oligodendrocyte precursor cells (OPCs). Unexpectedly, treatment with a soluble recombinant LINGO-1 ectodomain also had an inhibitory effect on OPCs and decreased myelinated axonal segments in cocultures with neurons from dorsal root ganglia. We demonstrated LINGO-1-mediated inhibition of OPCs through intercellular signaling by using a surface-bound LINGO-1 construct expressed ectopically in astrocytes. Further investigation showed that the soluble LINGO-1 ectodomain can interact with itself in trans by binding to CHO cells expressing full-length LINGO-1. Finally, we observed that soluble LINGO-1 could activate RhoA in OPCs. We propose that LINGO-1 acts as both a ligand and a receptor and that the mechanism by which it negatively regulates OPC differentiation and myelination is mediated by a homophilic intercellular interaction. Disruption of this protein-protein interaction could lead to a decrease of LINGO-1 inhibition and an increase in myelination.


Asunto(s)
Proteínas de la Membrana/fisiología , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/fisiología , Oligodendroglía/citología , Animales , Astrocitos/citología , Axones/metabolismo , Células CHO , Diferenciación Celular , Membrana Celular/metabolismo , Técnicas de Cocultivo , Cricetinae , Humanos , Inmunohistoquímica/métodos , Lentivirus/genética , Proteínas de la Membrana/metabolismo , Ratones , Esclerosis Múltiple/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo
2.
Biochemistry ; 49(9): 1862-72, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20099900

RESUMEN

The calcitonin gene-related peptide (CGRP) receptor is a heterodimer of two membrane proteins: calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). CLR is a class B G-protein-coupled receptor (GPCR), possessing a characteristic large amino-terminal extracellular domain (ECD) important for ligand recognition and binding. Dimerization of CLR with RAMP1 provides specificity for CGRP versus related agonists. Here we report the expression, purification, and refolding of a soluble form of the CGRP receptor comprising a heterodimer of the CLR and RAMP1 ECDs. The extracellular protein domains corresponding to residues 23-133 of CLR and residues 26-117 of RAMP1 were shown to be sufficient for formation of a stable, monodisperse complex. The binding affinity of the purified ECD complex for the CGRP peptide was significantly lower than that of the native receptor (IC(50) of 12 microM for the purified ECD complex vs 233 pM for membrane-bound CGRP receptor), indicating that other regions of CLR and/or RAMP1 are important for peptide agonist binding. However, high-affinity binding to known potent and specific nonpeptide antagonists of the CGRP receptor, including olcegepant and telcagepant (K(D) < 0.02 muM), as well as N-terminally truncated peptides and peptide analogues (140 nM to 1.62 microM) was observed.


Asunto(s)
Espacio Extracelular/química , Pliegue de Proteína , Receptores de Péptido Relacionado con el Gen de Calcitonina/química , Receptores de Calcitonina/química , Secuencia de Aminoácidos , Unión Competitiva , Proteína Similar al Receptor de Calcitonina , Línea Celular Tumoral , Cristalografía por Rayos X , Dimerización , Espacio Extracelular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteína 1 Modificadora de la Actividad de Receptores , Proteínas Modificadoras de la Actividad de Receptores , Receptores de Calcitonina/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/biosíntesis , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/aislamiento & purificación , Solubilidad
3.
J Med Chem ; 59(15): 7138-51, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27385654

RESUMEN

There are currently no treatments for life-threatening infections caused by human polyomaviruses JCV and BKV. We therefore report herein the first crystal structure of the hexameric helicase of JCV large T antigen (apo) and its use to drive the structure-based design of dual JCV and BKV ATP-competitive inhibitors. The crystal structures obtained by soaking our early inhibitors into the JCV helicase allowed us to rapidly improve the biochemical activity of our inhibitors from 18 µM for the early 6-(2-methoxyphenyl)- and the 6-(2-ethoxyphenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole hits 1a and 1b to 0.6 µM for triazolopyridine 12i. In addition, we were able to demonstrate measurable antiviral activity in Vero cells for our thiazolopyridine series in the absence of marked cytotoxicity, thus confirming the usefulness of this approach.


Asunto(s)
Virus BK/enzimología , ADN Helicasas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Virus JC/enzimología , ADN Helicasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
4.
Biochemistry ; 46(4): 954-64, 2007 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-17240979

RESUMEN

MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 A resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesis of salicylate from chorismate. At pH values below 7.5 isochorismate is the dominant product while above this pH value the enzyme converts chorismate to salicylate without the accumulation of isochorismate in solution. The salicylate and isochorismate synthase activities of MbtI are Mg2+-dependent, and in the absence of Mg2+ MbtI has a promiscuous chorismate mutase activity similar to that of the isochorismate pyruvate lyase, PchB, from Pseudomonas aeruginosa. MbtI is part of a larger family of chorismate-binding enzymes descended from a common ancestor (the MST family), that includes the isochorismate synthases and anthranilate synthases. The lack of active site residues unique to pyruvate eliminating members of this family, combined with the observed chorismate mutase activity, suggests that MbtI may exploit a sigmatropic pyruvate elimination mechanism similar to that proposed for PchB. Using a combination of structural, kinetic, and sequence based studies we propose a mechanism for MbtI applicable to all members of the MST enzyme family.


Asunto(s)
Liasas/química , Liasas/metabolismo , Mycobacterium tuberculosis/enzimología , Dominio Catalítico , Ácido Corísmico/química , Ácido Corísmico/metabolismo , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Cinética , Liasas/genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mycobacterium tuberculosis/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
5.
Biochemistry ; 46(4): 946-53, 2007 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-17240978

RESUMEN

Menaquinone biosynthesis is initiated by the conversion of chorismate to isochorismate, a reaction that is catalyzed by the menaquinone-specific isochorismate synthase, MenF. The catalytic mechanism of MenF has been probed using a combination of structural and biochemical studies, including the 2.5 A structure of the enzyme, and Lys190 has been identified as the base that activates water for nucleophilic attack at the chorismate C2 carbon. MenF is a member of a larger family of Mg2+ dependent chorismate binding enzymes catalyzing distinct chorismate transformations. The studies reported here extend the mechanism recently proposed for this enzyme family by He et al.: He, Z., Stigers Lavoie, K. D., Bartlett, P. A., and Toney, M. D. (2004) J. Am. Chem. Soc. 126, 2378-85.


Asunto(s)
Escherichia coli/enzimología , Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Vitamina K 2/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Dominio Catalítico , Ácido Corísmico/metabolismo , Cristalografía por Rayos X , ADN Bacteriano/genética , Escherichia coli/genética , Transferasas Intramoleculares/genética , Cinética , Lisina/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
6.
Biochemistry ; 42(15): 4406-13, 2003 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-12693936

RESUMEN

Triclosan, a common antibacterial additive used in consumer products, is an inhibitor of FabI, the enoyl reductase enzyme from type II bacterial fatty acid biosynthesis. In agreement with previous studies [Ward, W. H., Holdgate, G. A., Rowsell, S., McLean, E. G., Pauptit, R. A., Clayton, E., Nichols, W. W., Colls, J. G., Minshull, C. A., Jude, D. A., Mistry, A., Timms, D., Camble, R., Hales, N. J., Britton, C. J., and Taylor, I. W. (1999) Biochemistry 38, 12514-12525], we report here that triclosan is a slow, reversible, tight binding inhibitor of the FabI from Escherichia coli. Triclosan binds preferentially to the E.NAD(+) form of the wild-type enzyme with a K(1) value of 23 pM. In agreement with genetic selection experiments [McMurry, L. M., Oethinger, M., and Levy, S. B. (1998) Nature 394, 531-532], the affinity of triclosan for the FabI mutants G93V, M159T, and F203L is substantially reduced, binding preferentially to the E.NAD(+) forms of G93V, M159T, and F203L with K(1) values of 0.2 microM, 4 nM, and 0.9 nM, respectively. Triclosan binding to the E.NADH form of F203L can also be detected and is defined by a K(2) value of 51 nM. We have also characterized the Y156F and A197M mutants to compare and contrast the binding of triclosan to InhA, the homologous enoyl reductase from Mycobacterium tuberculosis. As observed for InhA, Y156F FabI has a decreased affinity for triclosan and the inhibitor binds to both E.NAD(+) and E.NADH forms of the enzyme with K(1) and K(2) values of 3 and 30 nM, respectively. The replacement of A197 with Met has no impact on triclosan affinity, indicating that differences in the sequence of the conserved active site loop cannot explain the 10000-fold difference in affinities of FabI and InhA for triclosan.


Asunto(s)
Escherichia coli/enzimología , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Sustitución de Aminoácidos , Dominio Catalítico , Enoil-ACP Reductasa (NADH) , Proteínas de Escherichia coli , Acido Graso Sintasa Tipo II , Cinética , Mutación , Oxidorreductasas/genética , Relación Estructura-Actividad , Triclosán/metabolismo
7.
Biochemistry ; 41(42): 12883-90, 2002 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-12379132

RESUMEN

Enoyl-CoA hydratase catalyzes the hydration of trans-2-crotonyl-CoA to 3(S)-HB-CoA, 3(S)-hydroxybutyryl-CoA with a stereospecificity (k(S)/k(R)) of 400000 to 1 [Wu, W. J., Feng, Y., He, X., Hofstein, H. S., Raleigh, D. P., and Tonge, P. J. (2000) J. Am. Chem. Soc. 122, 3987-3994]. Replacement of E164, one of the catalytic glutamates in the active site, with either aspartate or glutamine reduces the rate of formation of the 3(S) product enantiomer (k(S)) without affecting the rate of formation of the 3(R) product (k(R)). Consequently, k(S)/k(R) is 1000 and 0.33 for E164D and E164Q, respectively. In contrast, mutagenesis of E144, the second catalytic glutamate, reduces the rate of formation of both product enantiomers. Thus, only E144 is required for the formation of 3(R)-HB-CoA, 3(R)-hydroxybutyryl-CoA. Modeling studies together with analysis of alpha-proton exchange rates and experiments with crotonyl-oxyCoA, a substrate analogue in which the alpha-proton acidity has been reduced 10000-fold, support a mechanism of 3(R)-hydroxybutyryl-CoA formation that involves the E144-catalyzed stepwise addition of water to crotonyl-CoA which is bound in an s-trans conformation in the active site. Finally, we also demonstrate that hydrogen bonds in the oxyanion hole, provided by the backbone amide groups of G141 and A98, are important for the formation of both product enantiomers.


Asunto(s)
Enoil-CoA Hidratasa/química , Enoil-CoA Hidratasa/genética , Mutagénesis Sitio-Dirigida , Acilcoenzima A/química , Animales , Sitios de Unión/genética , Catálisis , Ácido Glutámico/genética , Concentración de Iones de Hidrógeno , Cinética , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Protones , Ratas , Estereoisomerismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA