Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0301739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968207

RESUMEN

With current imaging, discriminating tumor progression from treatment effect following immunotherapy or oncolytic virotherapy of glioblastoma (GBM) is challenging. A blood based diagnostic biomarker would therefore be helpful. Axl is a receptor tyrosine kinase that is highly expressed by many cancers including GBM. Axl expression is regulated through enzymatic cleavage of its extracellular domain. The resulting fragment can be detected in serum as soluble Axl (sAxl). sAxl levels can distinguish patients with melanoma, hepatocellular carcinoma, and pancreatic ductal adenocarcinoma from healthy controls. This is a pilot study to determine if sAxl is a candidate biomarker for GBM. The sAxl levels in the serum of 40 healthy volunteers and 20 GBM patients were determined using an enzyme-linked immunosorbent assay (ELISA). Pre- and post- operative sAxl levels were obtained. Volumetric MRI evaluation provided GBM tumor volume metrics. There was no significant difference in the sAxl levels of the volunteers (30.16±1.88 ng/ml) and GBM patients (30.74±1.96 ng/ml) p = 0.27. The postoperative sAxl levels were significantly higher than preoperative levels (32.32±2.26 ng/ml vs 30.74±1.96 ng/ml, p = 0.03). We found no correlation between tumor volume and sAxl levels. Axl expression was low or absent in 6 of 11 (55%) patient derived GBM cell lines. Given the wide range of Axl expression by GBM tumors, sAxl may not be a reliable indicator of GBM. However, given the small sample size in this study, a larger study may be considered.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Biomarcadores de Tumor , Glioblastoma , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Humanos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Glioblastoma/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/sangre , Proyectos Piloto , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Adulto , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/sangre , Anciano , Imagen por Resonancia Magnética/métodos , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática
2.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38168289

RESUMEN

Cellular plasticity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) starting from the conversion of normal cells into precancerous lesions to the progression of carcinoma subtypes associated with aggressiveness and therapeutic response. We discovered that normal acinar cell differentiation, maintained by the transcription factor Pdx1, suppresses a broad gastric cell identity that is maintained in metaplasia, neoplasia, and the classical subtype of PDAC in mouse and human. We have identified the receptor tyrosine kinase Ror2 as marker of a gastric metaplasia (SPEM)-like identity in the pancreas. Ablation of Ror2 in a mouse model of pancreatic tumorigenesis promoted a switch to a gastric pit cell identity that largely persisted through progression to the classical subtype of PDAC. In both human and mouse pancreatic cancer, ROR2 activity continued to antagonize the gastric pit cell identity, strongly promoting an epithelial to mesenchymal transition, conferring resistance to KRAS inhibition, and vulnerability to AKT inhibition.

3.
Cancer Discov ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975886

RESUMEN

Cellular plasticity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) starting from the conversion of normal cells into precancerous lesions, to the progression of carcinoma subtypes associated with aggressiveness and therapeutic response. We discovered that normal acinar cell differentiation, maintained by the transcription factor Pdx1, suppresses a broad gastric cell identity that is maintained in metaplasia, neoplasia, and the classical subtype of PDAC in mouse and human. We have identified the receptor tyrosine kinase Ror2 as marker of a gastric metaplasia-like identity in pancreas neoplasms. Ablation of Ror2 in a mouse model of pancreatic tumorigenesis promoted a switch to a gastric pit cell identity that largely persisted through progression to the classical subtype of PDAC. In both human and mouse pancreatic cancer, ROR2 activity continued to antagonize the gastric pit cell identity, strongly promoting an epithelial to mesenchymal transition, conferring resistance to KRAS inhibition, and vulnerability to AKT inhibition.

4.
Mol Ther Oncolytics ; 23: 447-457, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34901388

RESUMEN

Recent reports have shown that Zika virus (ZIKV) has oncolytic potential against human glioblastoma (GBM); however, the mechanisms underlying its tropism and cell entry are not completely understood. The receptor tyrosine kinase AXL has been identified as an entry receptor for ZIKV in a cell-type-specific manner. Interestingly, AXL is frequently overexpressed in GBM patients. Using commercially available GBM cell lines, we first show that cells expressing AXL are permissive for ZIKV infection, while cells that do not express AXL are not. Furthermore, inhibition of AXL kinase using R428 and antibody blockade of AXL receptor strongly attenuated virus entry in GBM cell lines. Additionally, CRISPR knockout of the AXL gene in GBM cell lines completely abolished ZIKV infection, significantly inhibited viral replication, and significantly reduced apoptosis compared with parental lines. Lastly, introduction of AXL receptor into non-expressing cell lines renders the cells susceptible to ZIKV infection. Together, these findings demonstrate that ZIKV entry into GBM cells in vitro is mediated by the AXL receptor and that following cell entry, productive infection is cytotoxic. Thus, ZIKV is a potential oncolytic virus for GBM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA