Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(1-2): 182-197.e23, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30595450

RESUMEN

During development, the precise relationships between transcription and chromatin modifications often remain unclear. We use the X chromosome inactivation (XCI) paradigm to explore the implication of chromatin changes in gene silencing. Using female mouse embryonic stem cells, we initiate XCI by inducing Xist and then monitor the temporal changes in transcription and chromatin by allele-specific profiling. This reveals histone deacetylation and H2AK119 ubiquitination as the earliest chromatin alterations during XCI. We show that HDAC3 is pre-bound on the X chromosome and that, upon Xist coating, its activity is required for efficient gene silencing. We also reveal that first PRC1-associated H2AK119Ub and then PRC2-associated H3K27me3 accumulate initially at large intergenic domains that can then spread into genes only in the context of histone deacetylation and gene silencing. Our results reveal the hierarchy of chromatin events during the initiation of XCI and identify key roles for chromatin in the early steps of transcriptional silencing.


Asunto(s)
Cromatina/metabolismo , Inactivación del Cromosoma X/genética , Inactivación del Cromosoma X/fisiología , Acetilación , Animales , Cromatina/genética , Células Madre Embrionarias , Epigenómica/métodos , Femenino , Silenciador del Gen , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Ratones , Proteínas del Grupo Polycomb/metabolismo , Procesamiento Proteico-Postraduccional , ARN Largo no Codificante/metabolismo , Transcripción Genética , Ubiquitinación , Cromosoma X/metabolismo
2.
Cell ; 161(2): 404-16, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25843628

RESUMEN

Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA-protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3' RNA processing machinery. Xist, an essential lncRNA for X chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK, which participates in Xist-mediated gene silencing and histone modifications but not Xist localization, and Drosophila Split ends homolog Spen, which interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing.


Asunto(s)
Espectrometría de Masas/métodos , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/metabolismo , Animales , Cromatina/metabolismo , Femenino , Silenciador del Gen , Humanos , Ratones , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/análisis
3.
EMBO Rep ; 22(3): e51989, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33605056

RESUMEN

During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non-coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2-dependent H3K27me3 and SETD8-dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3-specific intracellular antibody or H3K27me3-mintbody. By combining live-cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP-seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.


Asunto(s)
Histonas , ARN Largo no Codificante , Animales , Femenino , Silenciador del Gen , Histonas/genética , Histonas/metabolismo , Placenta/metabolismo , Embarazo , ARN Largo no Codificante/genética , Cromosoma X/genética , Inactivación del Cromosoma X/genética
4.
Mol Cell ; 53(2): 301-16, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24462204

RESUMEN

During X chromosome inactivation (XCI), the Polycomb Repressive Complex 2 (PRC2) is thought to participate in the early maintenance of the inactive state. Although Xist RNA is essential for the recruitment of PRC2 to the X chromosome, the precise mechanism remains unclear. Here, we demonstrate that the PRC2 cofactor Jarid2 is an important mediator of Xist-induced PRC2 targeting. The region containing the conserved B and F repeats of Xist is critical for Jarid2 recruitment via its unique N-terminal domain. Xist-induced Jarid2 recruitment occurs chromosome-wide independently of a functional PRC2 complex, unlike at other parts of the genome, such as CG-rich regions, where Jarid2 and PRC2 binding are interdependent. Conversely, we show that Jarid2 loss prevents efficient PRC2 and H3K27me3 enrichment to Xist-coated chromatin. Jarid2 thus represents an important intermediate between PRC2 and Xist RNA for the initial targeting of the PRC2 complex to the X chromosome during onset of XCI.


Asunto(s)
Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/fisiología , Inactivación del Cromosoma X , Cromosoma X/metabolismo , Animales , Compensación de Dosificación (Genética) , Humanos , Ratones , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/fisiología , ARN Largo no Codificante/metabolismo
5.
Nucleic Acids Res ; 48(16): e92, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32621604

RESUMEN

Genomic imprinting is an epigenetic phenomenon leading to parental allele-specific expression. Dosage of imprinted genes is crucial for normal development and its dysregulation accounts for several human disorders. This unusual expression pattern is mostly dictated by differences in DNA methylation between parental alleles at specific regulatory elements known as imprinting control regions (ICRs). Although several approaches can be used for methylation inspection, we lack an easy and cost-effective method to simultaneously measure DNA methylation at multiple imprinted regions. Here, we present IMPLICON, a high-throughput method measuring DNA methylation levels at imprinted regions with base-pair resolution and over 1000-fold coverage. We adapted amplicon bisulfite-sequencing protocols to design IMPLICON for ICRs in adult tissues of inbred mice, validating it in hybrid mice from reciprocal crosses for which we could discriminate methylation profiles in the two parental alleles. Lastly, we developed a human version of IMPLICON and detected imprinting errors in embryonic and induced pluripotent stem cells. We also provide rules and guidelines to adapt this method for investigating the DNA methylation landscape of any set of genomic regions. In summary, IMPLICON is a rapid, cost-effective and scalable method, which could become the gold standard in both imprinting research and diagnostics.


Asunto(s)
Islas de CpG , Metilación de ADN , Impresión Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Células Cultivadas , Femenino , Fibroblastos , Células Madre Embrionarias Humanas , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Biochem Soc Trans ; 49(6): 2549-2560, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34882219

RESUMEN

X-inactive-specific transcript (Xist) is a long non-coding RNA (lncRNA) essential for X-chromosome inactivation (XCI) in female placental mammals. Thirty years after its discovery, it is still puzzling how this lncRNA triggers major structural and transcriptional changes leading to the stable silencing of an entire chromosome. Recently, a series of studies in mouse cells have uncovered domains of functional specialization within Xist mapping to conserved tandem repeat regions, known as Repeats A-to-F. These functional domains interact with various RNA binding proteins (RBPs) and fold into distinct RNA structures to execute specific tasks in a synergistic and coordinated manner during the inactivation process. This modular organization of Xist is mostly conserved in humans, but recent data point towards differences regarding functional specialization of the tandem repeats between the two species. In this review, we summarize the recent progress on understanding the role of Xist repetitive blocks and their involvement in the molecular mechanisms underlying XCI. We also discuss these findings in the light of the similarities and differences between mouse and human Xist.


Asunto(s)
ARN Largo no Codificante/genética , Secuencias Repetidas en Tándem , Animales , Silenciador del Gen , Humanos , Ratones , Proteínas del Grupo Polycomb/metabolismo , Transcripción Genética , Inactivación del Cromosoma X
7.
EMBO Rep ; 20(10): e48019, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31456285

RESUMEN

Xist RNA has been established as the master regulator of X-chromosome inactivation (XCI) in female eutherian mammals, but its mechanism of action remains unclear. By creating novel Xist-inducible mutants at the endogenous locus in male mouse embryonic stem (ES) cells, we dissect the role of the conserved A-B-C-F repeats in the initiation of XCI. We find that transcriptional silencing can be largely uncoupled from Polycomb repressive complex 1 and complex 2 (PRC1/2) recruitment, which requires B and C repeats. Xist ΔB+C RNA specifically loses interaction with PCGF3/5 subunits of PRC1, while binding of other Xist partners is largely unaffected. However, a slight relaxation of transcriptional silencing in Xist ΔB+C indicates a role for PRC1/2 proteins in early stabilization of gene repression. Distinct modules within the Xist RNA are therefore involved in the convergence of independent chromatin modification and gene repression pathways. In this context, Polycomb recruitment seems to be of moderate relevance in the initiation of silencing.


Asunto(s)
Proteínas del Grupo Polycomb/metabolismo , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X/genética , Animales , Femenino , Histonas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Modelos Genéticos , Mutación/genética , Mapas de Interacción de Proteínas , Secuencias Repetitivas de Ácidos Nucleicos/genética , Transcripción Genética , Cromosoma X/genética
8.
Proc Natl Acad Sci U S A ; 111(45): 16088-93, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25349437

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance and obesity, as well as progressive liver dysfunction. Recent animal studies have underscored the importance of hepatic growth hormone (GH) signaling in the development of NAFLD. The imprinted Delta-like homolog 1 (Dlk1)/preadipocyte factor 1 (Pref1) gene encodes a complex protein producing both circulating and membrane-tethered isoforms whose expression dosage is functionally important because even modest elevation during embryogenesis causes lethality. DLK1 is up-regulated during embryogenesis, during suckling, and in the mother during pregnancy. We investigated the normal role for elevated DLK1 dosage by overexpressing Dlk1 from endogenous control elements. This increased DLK1 dosage caused improved glucose tolerance with no primary defect in adipose tissue expansion even under extreme metabolic stress. Rather, Dlk1 overexpression caused reduced fat stores, pituitary insulin-like growth factor 1 (IGF1) resistance, and a defect in feedback regulation of GH. Increased circulatory GH culminated in a switch in whole body fuel metabolism and a reduction in hepatic steatosis. We propose that the function of DLK1 is to shift the metabolic mode of the organism toward peripheral lipid oxidation and away from lipid storage, thus mediating important physiological adaptations associated with early life and with implications for metabolic disease resistance.


Asunto(s)
Desarrollo Embrionario , Hígado Graso/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metabolismo de los Lípidos , Animales , Proteínas de Unión al Calcio , Hígado Graso/genética , Hígado Graso/patología , Hígado Graso/prevención & control , Femenino , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Transgénicos , Embarazo
9.
Hum Cell ; 37(4): 1205-1214, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762696

RESUMEN

Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the MYPBC3 gene, which encodes the cardiac myosin-binding protein C (cMyBP-C). Most pathogenic variants in MYPBC3 are either nonsense mutations or result in frameshifts, suggesting that the primary disease mechanism involves reduced functional cMyBP-C protein levels within sarcomeres. However, a subset of MYPBC3 variants are missense mutations, and the molecular mechanisms underlying their pathogenicity remain elusive. Upon in vitro differentiation into cardiomyocytes, induced pluripotent stem cells (iPSCs) derived from HCM patients represent a valuable resource for disease modeling. In this study, we generated two iPSC lines from peripheral blood mononuclear cells (PBMCs) of a female with early onset and severe HCM linked to the MYBPC3: c.772G > A variant. Although this variant was initially classified as a missense mutation, recent studies indicate that it interferes with splicing and results in a frameshift. The generated iPSC lines exhibit a normal karyotype and display hallmark characteristics of pluripotency, including the ability to undergo trilineage differentiation. These novel iPSCs expand the existing repertoire of MYPBC3-mutated cell lines, broadening the spectrum of resources for exploring how diverse mutations induce HCM. They additionally offer a platform to study potential secondary genetic elements contributing to the pronounced disease severity observed in this individual.


Asunto(s)
Cardiomiopatía Hipertrófica , Proteínas Portadoras , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/etiología , Femenino , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Mutación Missense/genética , Índice de Severidad de la Enfermedad , Mutación/genética , Línea Celular , Mutación del Sistema de Lectura/genética , Leucocitos Mononucleares/metabolismo , Células Cultivadas
10.
Stem Cell Res ; 76: 103362, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417376

RESUMEN

Familial hypertrophic cardiomyopathy (HCM) stands as a predominant heart condition, characterised by left ventricle hypertrophy in the absence of any associated loading conditions, with affected individuals having an increased risk of developing heart failure and sudden cardiac death (SCD). Two induced pluripotent stem cell (iPSC) lines were derived from peripheral blood mononuclear cells obtained from two unrelated individuals with previously reported nonsense mutations in the MYBPC3 gene. The first individual is a 48-year-old male (F26) with the MYBPC3 c.1731G > A HCM mutation, whereas the second individual is a 43-year-old female (F82) carrying the MYBPC3 c.2670G > A HCM mutation. The generated iPSCs exhibit appropriate expression of pluripotency markers, trilineage differentiation capacity and a normal karyotype. This resource contributes to gaining deeper insights into the pathophysiological mechanisms that underlie HCM.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar , Células Madre Pluripotentes Inducidas , Masculino , Femenino , Humanos , Adulto , Persona de Mediana Edad , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Codón sin Sentido , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares , Mutación , Proteínas del Citoesqueleto/genética
11.
Stem Cell Res ; 74: 103282, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38104429

RESUMEN

Familial hypertrophic cardiomyopathy (HCM) is the most common inherited heart condition. HCM patients show left ventricle hypertrophy without any associated loading conditions, being at risk for heart failure and sudden cardiac death. Two induced pluripotent stem cell (iPSC) lines were generated from peripheral blood mononuclear cells obtained from two unrelated individuals, a 54-year-old male (F81) and a 44-year-old female (F93), both carrying the MYBPC3 c.1484G>A HCM mutation. iPSCs show expression of pluripotency markers, trilineage differentiation capacity and a normal karyotype. This resource enables further assessment of the pathophysiological development of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar , Células Madre Pluripotentes Inducidas , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Mutación
12.
Front Cell Dev Biol ; 11: 1274040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928900

RESUMEN

Angelman syndrome (AS) is an imprinted neurodevelopmental disorder that lacks a cure, characterized by developmental delay, intellectual impairment, seizures, ataxia, and paroxysmal laughter. The condition arises due to the loss of the maternally inherited copy of the UBE3A gene in neurons. The paternally inherited UBE3A allele is unable to compensate because it is silenced by the expression of an antisense transcript (UBE3A-ATS) on the paternal chromosome. UBE3A, encoding enigmatic E3 ubiquitin ligase variants, regulates target proteins by either modifying their properties/functions or leading them to degradation through the proteasome. Over time, animal models, particularly the Ube3a mat-/pat+ Knock-Out (KO) mice, have significantly contributed to our understanding of the molecular mechanisms underlying AS. However, a shift toward human pluripotent stem cell models (PSCs), such as human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), has gained momentum. These stem cell models accurately capture human genetic and cellular characteristics, offering an alternative or a complement to animal experimentation. Human stem cells possess the remarkable ability to recapitulate neurogenesis and generate "brain-in-a-dish" models, making them valuable tools for studying neurodevelopmental disorders like AS. In this review, we provide an overview of the current state-of-the-art human stem cell models of AS and explore their potential to become the preclinical models of choice for drug screening and development, thus propelling AS therapeutic advancements and improving the lives of affected individuals.

13.
PLoS Genet ; 5(2): e1000392, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19247431

RESUMEN

Genomic imprinting is a normal process that causes genes to be expressed according to parental origin. The selective advantage conferred by imprinting is not understood but is hypothesised to act on dosage-critical genes. Here, we report a unique model in which the consequences of a single, double, and triple dosage of the imprinted Dlk1/Pref1, normally repressed on the maternally inherited chromosome, can be assessed in the growing embryo. BAC-transgenic mice were generated that over-express Dlk1 from endogenous regulators at all sites of embryonic activity. Triple dosage causes lethality associated with major organ abnormalities. Embryos expressing a double dose of Dlk1, recapitulating loss of imprinting, are growth enhanced but fail to thrive in early life, despite the early growth advantage. Thus, any benefit conferred by increased embryonic size is offset by postnatal lethality. We propose a negative correlation between gene dosage and survival that fixes an upper limit on growth promotion by Dlk1, and we hypothesize that trade-off between growth and lethality might have driven imprinting at this locus.


Asunto(s)
Desarrollo Embrionario , Evolución Molecular , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Péptidos y Proteínas de Señalización Intercelular/genética , Animales , Huesos/embriología , Huesos/metabolismo , Proteínas de Unión al Calcio , Femenino , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo
14.
Stem Cell Res ; 61: 102757, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339881

RESUMEN

Angelman Syndrome is a rare neurodevelopmental disorder caused by several (epi)genetic alterations. The patients present strong neurological impairment due to the absence of a functional maternal UBE3A gene in neurons. Here, we generated and characterized a new induced pluripotent stem cell (iPSC) line from a female child with Angelman syndrome harbouring a class II deletion. iPSCs were reprogrammed from fibroblasts using Sendai viruses. The new iPSCs express pluripotency markers, are capable of trilineage in vitro differentiation and have the expected imprinting status of Angelman syndrome. These iPSCs are a valuable tool to elucidate the pathophysiological mechanisms associated with this disease.


Asunto(s)
Síndrome de Angelman , Células Madre Pluripotentes Inducidas , Síndrome de Angelman/genética , Diferenciación Celular , Niño , Deleción Cromosómica , Cromosomas , Cromosomas Humanos Par 15 , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Neuronas
15.
Nat Commun ; 13(1): 5432, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114205

RESUMEN

Reprogramming of somatic cells into induced Pluripotent Stem Cells (iPSCs) is a major leap towards personalised approaches to disease modelling and cell-replacement therapies. However, we still lack the ability to fully control the epigenetic status of iPSCs, which is a major hurdle for their downstream applications. Epigenetic fidelity can be tracked by genomic imprinting, a phenomenon dependent on DNA methylation, which is frequently perturbed in iPSCs by yet unknown reasons. To try to understand the causes underlying these defects, we conducted a thorough imprinting analysis using IMPLICON, a high-throughput method measuring DNA methylation levels, in multiple female and male murine iPSC lines generated under different experimental conditions. Our results show that imprinting defects are remarkably common in iPSCs, but their nature depends on the sex of donor cells and their response to culture conditions. Imprints in female iPSCs resist the initial genome-wide DNA demethylation wave during reprogramming, but ultimately cells accumulate hypomethylation defects irrespective of culture medium formulations. In contrast, imprinting defects on male iPSCs depends on the experimental conditions and arise during reprogramming, being mitigated by the addition of vitamin C (VitC). Our findings are fundamental to further optimise reprogramming strategies and generate iPSCs with a stable epigenome.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Ácido Ascórbico/metabolismo , Metilación de ADN , Femenino , Genoma , Impresión Genómica , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones
16.
Trends Genet ; 24(6): 306-16, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18471925

RESUMEN

Genomic imprinting causes genes to be expressed or repressed depending on their parental origin. The majority of imprinted genes identified to date map in clusters and much of our knowledge of the mechanisms, function and evolution of imprinting have emerged from their analysis. The cluster of imprinted genes delineated by the delta-like homolog 1 gene and the type III iodothyronine deiodinase gene (Dlk1-Dio3) is located on distal mouse chromosome 12 and human chromosome 14. Its developmental importance is exemplified by severe phenotypes associated with altered dosage of these genes in mice and humans. The domain contains three imprinted protein-coding genes, Dlk1, Rtl1 and Dio3, expressed from the paternally inherited chromosome and several imprinted large and small noncoding RNA genes expressed from the maternally inherited homolog. Here, we discuss the function and regulation of imprinting at this domain.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/química , Mamíferos/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Animales , Proteínas de Unión al Calcio , Cromosomas Humanos Par 14 , Regulación de la Expresión Génica , Impresión Genómica , Humanos , Yoduro Peroxidasa/genética , Ratones , Modelos Biológicos , Estructura Terciaria de Proteína
17.
Hum Genet ; 130(2): 307-27, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21687993

RESUMEN

X-chromosome inactivation (XCI) results in the transcriptional silencing of one X-chromosome in females to attain gene dosage parity between XX female and XY male mammals. Mammals appear to have developed rather diverse strategies to initiate XCI in early development. In placental mammals XCI depends on the regulatory noncoding RNA X-inactive specific transcript (Xist), which is absent in marsupials and monotremes. Surprisingly, even placental mammals show differences in the initiation of XCI in terms of Xist regulation and the timing to acquire dosage compensation. Despite this, all placental mammals achieve chromosome-wide gene silencing at some point in development, and this is maintained by epigenetic marks such as chromatin modifications and DNA methylation. In this review, we will summarise recent findings concerning the events that occur downstream of Xist RNA coating of the inactive X-chromosome (Xi) to ensure its heterochromatinization and the maintenance of the inactive state in the mouse and highlight similarities and differences between mammals.


Asunto(s)
Evolución Biológica , Metilación de ADN/fisiología , Epigénesis Genética/fisiología , Heterocromatina/fisiología , ARN no Traducido/fisiología , Inactivación del Cromosoma X/fisiología , Cromosoma X/genética , Factores de Edad , Animales , Ciclo Celular/fisiología , Metilación de ADN/genética , Femenino , Histonas/genética , Humanos , Mamíferos , Modelos Biológicos , Modelos Moleculares , ARN Largo no Codificante , ARN no Traducido/genética , Especificidad de la Especie
18.
FEBS J ; 287(11): 2154-2175, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32087041

RESUMEN

Angelman syndrome (AS) is an incurable neurodevelopmental disease caused by loss of function of the maternally inherited UBE3A gene. AS is characterized by a defined set of symptoms, namely severe developmental delay, speech impairment, uncontrolled laughter, and ataxia. Current understanding of the pathophysiology of AS relies mostly on studies using the murine model of the disease, although alternative models based on patient-derived stem cells are now emerging. Here, we summarize the literature of the last decade concerning the three major brain areas that have been the subject of study in the context of AS: hippocampus, cortex, and the cerebellum. Our comprehensive analysis highlights the major phenotypes ascribed to the different brain areas. Moreover, we also discuss the major drawbacks of current models and point out future directions for research in the context of AS, which will hopefully lead us to an effective treatment of this condition in humans.


Asunto(s)
Síndrome de Angelman/genética , Encéfalo/diagnóstico por imagen , Trastornos del Neurodesarrollo/genética , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/diagnóstico por imagen , Síndrome de Angelman/patología , Síndrome de Angelman/terapia , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Corteza Cerebelosa/diagnóstico por imagen , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/patología , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Cerebelo/patología , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Mutación con Pérdida de Función/genética , Ratones , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/terapia
19.
Essays Biochem ; 63(6): 663-676, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31782494

RESUMEN

Monoallelic gene expression occurs in diploid cells when only one of the two alleles of a gene is active. There are three main classes of genes that display monoallelic expression in mammalian genomes: (1) imprinted genes that are monoallelically expressed in a parent-of-origin dependent manner; (2) X-linked genes that undergo random X-chromosome inactivation in female cells; (3) random monoallelically expressed single and clustered genes located on autosomes. The heritability of monoallelic expression patterns during cell divisions implies that epigenetic mechanisms are involved in the cellular memory of these expression states. Among these, methylation of CpG sites on DNA is one of the best described modification to explain somatic inheritance. Here, we discuss the relevance of DNA methylation for the establishment and maintenance of monoallelic expression patterns among these three groups of genes, and how this is intrinsically linked to development and cellular states.


Asunto(s)
Alelos , Metilación de ADN , ADN/metabolismo , Epigénesis Genética/fisiología , Expresión Génica/fisiología , Animales , ADN/genética , Metilación de ADN/fisiología , Femenino , Impresión Genómica/fisiología , Humanos , Inactivación del Cromosoma X/fisiología
20.
Aging Cell ; 18(1): e12870, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30456884

RESUMEN

One of the most outstanding observations from next-generation sequencing approaches was that only 1.5% of our genes code for proteins. The biggest part is transcribed but give rise to different families of RNAs without coding potential. The functional relevance of these abundant transcripts remains far from elucidated. Among them are the long non-coding RNAs (lncRNAs), a relatively large and heterogeneous group of RNAs shown to be highly tissue-specific, indicating a prominent role in processes controlling cellular identity. In particular, lncRNAs have been linked to both stemness properties and detrimental pathways regulating the aging process, being novel players in the intricate network guiding tissue homeostasis. Here, we summarize the up-to-date information on the role of lncRNAs that affect stemness and hence impact upon aging, highlighting the likelihood that lncRNAs may represent an unexploited reservoir of potential therapeutic targets for reprogramming applications and aging-related diseases.


Asunto(s)
Senescencia Celular/genética , ARN Largo no Codificante/genética , Células Madre/metabolismo , Reprogramación Celular/genética , Epigénesis Genética , Humanos , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA