Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Malar J ; 12: 89, 2013 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-23497003

RESUMEN

BACKGROUND: The discovery and development of anti-malarial compounds of plant origin and semisynthetic derivatives thereof, such as quinine (QN) and chloroquine (CQ), has highlighted the importance of these compounds in the treatment of malaria. Ursolic acid analogues bearing an acetyl group at C-3 have demonstrated significant anti-malarial activity. With this in mind, two new series of betulinic acid (BA) and ursolic acid (UA) derivatives with ester groups at C-3 were synthesized in an attempt to improve anti-malarial activity, reduce cytotoxicity, and search for new targets. In vitro activity against CQ-sensitive Plasmodium falciparum 3D7 and an evaluation of cytotoxicity in a mammalian cell line (HEK293T) are reported. Furthermore, two possible mechanisms of action of anti-malarial compounds have been evaluated: effects on mitochondrial membrane potential (ΔΨm) and inhibition of ß-haematin formation. RESULTS: Among the 18 derivatives synthesized, those having shorter side chains were most effective against CQ-sensitive P. falciparum 3D7, and were non-cytotoxic. These derivatives were three to five times more active than BA and UA. A DiOC(6)(3) ΔΨm assay showed that mitochondria are not involved in their mechanism of action. Inhibition of ß-haematin formation by the active derivatives was weaker than with CQ. Compounds of the BA series were generally more active against P. falciparum 3D7 than those of the UA series. CONCLUSIONS: Three new anti-malarial prototypes were obtained from natural sources through an easy and relatively inexpensive synthesis. They represent an alternative for new lead compounds for anti-malarial chemotherapy.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Triterpenos/farmacología , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Antimaláricos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Humanos , Triterpenos Pentacíclicos , Triterpenos/química , Triterpenos/aislamiento & purificación , Triterpenos/toxicidad , Ácido Betulínico , Ácido Ursólico
2.
Anticancer Agents Med Chem ; 17(13): 1777-1785, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28403779

RESUMEN

BACKGROUND: Chronic myeloid leukemia (CML) is currently treated with imatinib, a Bcr-Abl inhibitor. However, resistance to this drug usually develops over time. Triptolide, a diterpenoid triepoxide, has been shown active against CML cells resistant to imatinib, acting mainly on the level of Bcr-Abl transcription inhibition. OBJECTIVE: Here, we used the triterpene betulinic acid, a known proteasome inhibitor with potential antileukemic activity, as a scaffold for the generation of analogues with predicted triptolide biological activity. METHOD: Betulinic acid derivatives were designed based on the structure-activity relationship of triptolide and evaluated for their cytotoxic effects in CML cells, lymphocytes and human keratinocytes (HaCaT), as well as against the proteasome complex. The main modification performed on betulinic acid was fluorination at C-28 and epoxidation, both of which are responsible for enhancing activity of triptolide. A total of 10 compounds were obtained: 6 previously described and 4 novel compounds. The cytotoxic activity over a CML cell line (K562) was assessed using flow cytometry and compared to lymphocytes and HaCaT. RESULT: The results show that betulinic acid was the most cytotoxic compound against CML cells, showing a good selectivity index for cancer over normal cells. The most important trend for the activity in betulinic acid derivatives is the presence of a free hydroxyl group at C-3 and a carboxyl group at C-28. Results also indicated that the epoxide is important for enhancing the activity, while modification at C-28 worsens the activity. CONCLUSION: Proteasome inhibition assays suggest that proteasome is the main target for betulinic acid and its derivatives.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Diseño de Fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Triterpenos/síntesis química , Triterpenos/farmacología , Antineoplásicos/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células K562 , Triterpenos Pentacíclicos , Análisis Espectral/métodos , Relación Estructura-Actividad , Triterpenos/uso terapéutico , Ácido Betulínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA