RESUMEN
The establishment of anatomically stereotyped axonal projections is fundamental to neuronal function. While most neurons project their axons within the central nervous system (CNS), only axons of centrally born motoneurons and peripherally born sensory neurons link the CNS and peripheral nervous system (PNS) together by navigating through specialized CNS/PNS transition zones. Such selective restriction is of importance because inappropriate CNS axonal exit could lead to loss of correct connectivity and also to gain of erroneous functions. However, to date, surprisingly little is known about the molecular-genetic mechanisms that regulate how central axons are confined within the CNS during development. Here, we show that netrin 1/Dcc/Unc5 chemotropism contributes to axonal confinement within the CNS. In both Ntn1 and Dcc mutant mouse embryos, some spinal interneuronal axons exit the CNS by traversing the CNS/PNS transition zones normally reserved for motor and sensory axons. We provide evidence that netrin 1 signalling preserves CNS/PNS axonal integrity in three ways: (1) netrin 1/Dcc ventral attraction diverts axons away from potential exit points; (2) a Dcc/Unc5c-dependent netrin 1 chemoinhibitory barrier in the dorsolateral spinal cord prevents interneurons from being close to the dorsal CNS/PNS transition zone; and (3) a netrin 1/Dcc-dependent, Unc5c-independent mechanism that actively prevents exit from the CNS. Together, these findings provide insights into the molecular mechanisms that maintain CNS/PNS integrity and, to the best of our knowledge, present the first evidence that chemotropic signalling regulates interneuronal CNS axonal confinement in vertebrates.
Asunto(s)
Axones/metabolismo , Sistema Nervioso Central/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Biomarcadores/metabolismo , Sistema Nervioso Central/citología , Receptor DCC , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Interneuronas/citología , Interneuronas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Netrina-1 , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/deficiencia , Transducción de Señal/genética , Médula Espinal/citología , Médula Espinal/embriología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , beta-Galactosidasa/metabolismoRESUMEN
Spinal cord neurons respond to peripheral noxious stimuli and relay this information to higher brain centers, but the molecules controlling the assembly of such pathways are poorly known. In this study, we use the intersection of Lmx1b and Hoxb8::Cre expression in the spinal cord to genetically define nociceptive circuits. Specifically, we show that Lmx1b, previously shown to be expressed in glutamatergic dorsal horn neurons and critical for dorsal horn development, is expressed in nociceptive dorsal horn neurons and that its deletion results in the specific loss of excitatory dorsal horn neurons by apoptosis, without any effect on inhibitory neuron numbers. To assess the behavioral consequences of Lmx1b deletion in the spinal cord, we used the brain-sparing driver Hoxb8::Cre. We show that such a deletion of Lmxb1 leads to a robust reduction in sensitivity to mechanical and thermal noxious stimulation. Furthermore, such conditional mutant mice show a loss of a subpopulation of glutamatergic dorsal horn neurons, abnormal sensory afferent innervations, and reduced spinofugal innervation of the parabrachial nucleus and the periaqueductal gray, important nociceptive structures. Together, our results demonstrate an important role for the intersection of Lmx1b and Hoxb8::cre expression in the development of nociceptive dorsal horn circuits critical for mechanical and thermal pain processing.
Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/fisiología , Nocicepción/fisiología , Células del Asta Posterior/fisiología , Asta Dorsal de la Médula Espinal/citología , Asta Dorsal de la Médula Espinal/metabolismo , Factores de Transcripción/fisiología , Animales , Apoptosis , Eliminación de Gen , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM/biosíntesis , Proteínas con Homeodominio LIM/deficiencia , Proteínas con Homeodominio LIM/genética , Ratones , Vías Nerviosas , Neuronas Aferentes , Núcleos Parabraquiales/fisiología , Sustancia Gris Periacueductal/fisiología , Células del Asta Posterior/citología , Células del Asta Posterior/patología , Asta Dorsal de la Médula Espinal/crecimiento & desarrollo , Asta Dorsal de la Médula Espinal/patología , Factores de Transcripción/biosíntesis , Factores de Transcripción/deficiencia , Factores de Transcripción/genéticaRESUMEN
Avoidance of environmental dangers depends on nociceptive topognosis, or the ability to localize painful stimuli. This is proposed to rely on somatotopic maps arising from topographically organized point-to-point connections between the body surface and the CNS. To determine the role of topographic organization of spinal ascending projections in nociceptive topognosis, we generated a conditional knockout mouse lacking expression of the netrin1 receptor DCC in the spinal cord. These mice have an increased number of ipsilateral spinothalamic connections and exhibit aberrant activation of the somatosensory cortex in response to unilateral stimulation. Furthermore, spinal cord-specific Dcc knockout animals displayed mislocalized licking responses to formalin injection, indicating impaired topognosis. Similarly, humans with DCC mutations experience bilateral sensation evoked by unilateral somatosensory stimulation. Collectively, our results constitute functional evidence of the importance of topographic organization of spinofugal connections for nociceptive topognosis.