Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Immunol ; 309: 7-18, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27499212

RESUMEN

Leishmania parasites are the causative agents of the leishmaniases, a collection of vector-borne diseases that range from simple cutaneous to fatal visceral forms. Employing potent immune modulation mechanisms, Leishmania is able to render the host macrophage inactive and persist inside its phagolysosome. In the last few years, the role of exosomes in Leishmania-host interactions has been increasingly investigated. For instance, it was reported that Leishmania exosome release is augmented following temperature shift, a condition mimicking parasite's entry into its mammalian host. Leishmania exosomes were found to strongly affect macrophage cell signaling and functions, similarly to whole parasites. Importantly, these vesicles were shown to be pro-inflammatory, capable to recruit neutrophils at their inoculation site exacerbating the pathology. In this review, we provide the most recent insights on the role of exosomes and other virulence factors, especially the surface protease GP63, in Leishmania-host interactions, deepening our knowledge on leishmaniasis and paving the way for the development of new therapeutics.


Asunto(s)
Exosomas/metabolismo , Leishmania/inmunología , Macrófagos/inmunología , Metaloendopeptidasas/metabolismo , Factores de Virulencia , Animales , Interacciones Huésped-Parásitos , Humanos , Inmunidad Innata , Leishmania/patogenicidad , Leishmaniasis , Macrófagos/microbiología
2.
Front Cell Infect Microbiol ; 14: 1354636, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440791

RESUMEN

Introduction: Extracellular vesicles (EVs) are heterogenous cell-derived membrane-bound structures which can be subdivided into three distinct classes according to distinct morphological characteristics, cellular origins, and functions. Small EVs, or exosomes, can be produced by the protozoan parasite Leishmania through the evolutionarily conserved ESCRT pathway, and act as effectors of virulence and drivers of pathogenesis within mammalian hosts. Techniques for the identification of EVs of non-mammalian origin, however, remain inaccurate in comparison to their well-characterized mammalian counterparts. Thus, we still lack reliable and specific markers for Leishmania-derived exosomes, which poses a significant challenge to the field. Methods: Herein, we utilized serial differential ultracentrifugation to separate Leishmania-derived EV populations into three distinct fractions. Nanoparticle tracking analysis and transmission electron microscopy were used to validate their morphological characteristics, and bioinformatic analysis of LC-MS/MS proteomics corroborated cellular origins and function. Discussion: Proteomic data indicated potential novel proteic markers of Leishmania-derived exosomes, including proteins involved in endosomal machinery and the ESCRT pathway, as well as the parasitic phosphatase PRL-1. Further investigation is required to determine the specificity and sensitivity of these markers.


Asunto(s)
Exosomas , Leishmania , Animales , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Complejos de Clasificación Endosomal Requeridos para el Transporte , Mamíferos
3.
Front Immunol ; 15: 1436151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076982

RESUMEN

Introduction: Exosomes produced by the protozoan parasite Leishmania (LeishEXO) are well-established drivers of virulence, though mechanisms underlying their exacerbation of experimental leishmaniasis remain elusive. Expression of Annexin A1 (ANXA1), a protein implicated in exosome-mediated pathologies and viral internalization, has been shown to correlate with cutaneous leishmaniasis severity. Given ANXA1's regulation of myeloid cells - the canonical hosts for Leishmania - we studied the potential role of ANXA1 and its receptors FPR1/2 in exerting LeishEXO's effects. Methods: Murine and in vitro ANXA1-/- models were used to study the generation of protective TH1 responses during experimental L. major infection with and without LeishEXO. Recruitment of inflammatory cells was assessed using a peritoneal cell recruitment assay and immunophenotyping, and production of inflammatory mediators was measured using a cytokine and chemokine array. Treatment of experimental models with FPR2 antagonist WRW4 and FPR1/2 agonist WKYMVm was used to delineate the role of the FPR/ANXA1 axis in LeishEXO-mediated hyperpathogenesis. Results: We established that ANXA1 deficiency prohibits LeishEXO-mediated pathogenesis and myeloid cell infection, with minimal alterations to adaptive and innate immune phenotypes. FPR2 blockade with WRW4 similarly inhibited leishmanial hyperpathogenesis, while direct activation of FPRs with WKYMVm enhanced infection and recapitulated the LeishEXO-mediated phenotype. This research describes LeishEXO's utilization of the ANXA1/FPR axis to facilitate parasitic internalization and pathogenesis, which may be leveraged in the development of therapeutics for leishmaniasis.


Asunto(s)
Anexina A1 , Exosomas , Leishmania major , Leishmaniasis Cutánea , Ratones Noqueados , Receptores de Formil Péptido , Anexina A1/metabolismo , Anexina A1/genética , Animales , Exosomas/metabolismo , Exosomas/inmunología , Leishmania major/inmunología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/metabolismo , Ratones , Receptores de Formil Péptido/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Piel/parasitología , Piel/inmunología , Piel/patología , Piel/metabolismo , Células TH1/inmunología , Femenino
4.
Mucosal Immunol ; 16(4): 462-475, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37182738

RESUMEN

Interleukin (IL)-18, a member of the IL-1 family of alarmins, is abundantly released in the lungs following influenza A (IAV) infections yet its role in orchestrating the local adaptive immune response remains ill defined. Through genetic disruption of the IL-18 receptor, we demonstrate that IL-18 not only promotes pulmonary TH1 responses but also influences regulatory T cells (TREG) function in the infected lungs. As the response unfolds, TREG cells accumulating in the lungs express Helios, T-bet, CXCR3, and IL-18R1 and produce interferon γ in the presence of IL-12. During IAV, IL-18R1 is required for TREG cells to control TH17, but not TH1, responses and promote a return to lung homeostasis, revealing a novel mechanism of selective suppression. Moreover, this observation was not limited to the lungs, as skin-localized TREG cells require an IL-18 signal to specifically suppress IL-17A production by TH17 and γδ T cells in a model of chronic cutaneous Leishmania major infection. Overall, these results uncover how IL-18 orchestrates the tissue adaptation of TREG cells to selectively favor TH1 over TH17 responses during TH1-driven immune responses and provide a novel perspective into how IL-18 dictates the immune response during viral and parasitic infections.


Asunto(s)
Interleucina-18 , Infección Persistente , Humanos , Linfocitos T Reguladores , Interferón gamma , Interleucina-12 , Células Th17 , Células TH1
5.
Front Cell Infect Microbiol ; 11: 709258, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35186777

RESUMEN

Protozoan parasites of the genus Leishmania are transmitted by the bite of infected sand flies leading to a wide range of diseases called leishmaniasis. Recently, we demonstrated that Leishmania spp.-derived exosomes/extracellular vesicles (EVs/LeishEXO) were released in the lumen of the sand fly midgut and to be co-egested with the parasite during the blood meal and that LeishEXO were found to stimulate an inflammatory response conducting to an exacerbated cutaneous leishmaniasis, also it was shown that these vesicles cargo important virulence factors like GP63. Thus, this study aimed to confirm through morphological and proteomic analysis a novel model specificity utilizing another set of GP63-altered Leishmania amazonensis parasite strains. Consequently, we proposed to further study the impact of different GP63 vesicle expression levels on their ability to modulate innate inflammatory cell responses, and finally to determine the importance of GP63 vesicle content on the exacerbation of the cutaneous Leishmania spp. pathology after their host co-inoculation. Our results revealed that the protein composition of extracted extracellular vesicles were similar to each other and that GP63 was the sole virulence factor changed in the exosomes composition confirming the specificity of the chosen novel model. We further demonstrated that vesicles with different GP63 EVs cargo displayed distinctive macrophage immunomodulatory capabilities at both gene and protein expression in vitro. Finally, we showed their diverse impact on the Leishmania spp. cutaneous pathology in an in vivo setting and confirmed GP63 as a primordial component of the ability of these EVs in augmenting the inflammatory cutaneous response in Leishmania spp. infection. Our findings provide new insight on the immune response happening in cutaneous leishmaniasis, shade light on the mechanism behind the host-pathogen interaction occurring in the initial moments of infection, thus creating the opportunity of using them as the target of new pharmacological treatments and vaccinations.


Asunto(s)
Exosomas , Vesículas Extracelulares , Leishmania , Leishmaniasis Cutánea , Animales , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Leishmaniasis Cutánea/parasitología , Metaloendopeptidasas/metabolismo , Proteómica/métodos , Vacunación
6.
Nat Microbiol ; 4(4): 724, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30808989

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nat Microbiol ; 4(4): 714-723, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30692670

RESUMEN

Leishmania are ancient eukaryotes that have retained the exosome pathway through evolution. Leishmania RNA virus 1 (LRV1)-infected Leishmania species are associated with a particularly aggressive mucocutaneous disease triggered in response to the double-stranded RNA (dsRNA) virus. However, it is unclear how LRV1 is exposed to the mammalian host cells. In higher eukaryotes, some viruses are known to utilize the host exosome pathway for their formation and cell-to-cell spread. As a result, exosomes derived from infected cells contain viral material or particles. Herein, we investigated whether LRV1 exploits the Leishmania exosome pathway to reach the extracellular environment. Biochemical and electron microscopy analyses of exosomes derived from LRV1-infected Leishmania revealed that most dsRNA LRV1 co-fractionated with exosomes, and that a portion of viral particles was surrounded by these vesicles. Transfer assays of LRV1-containing exosome preparations showed that a significant amount of parasites were rapidly and transiently infected by LRV1. Remarkably, these freshly infected parasites generated more severe lesions in mice than non-infected ones. Moreover, mice co-infected with parasites and LRV1-containing exosomes also developed a more severe disease. Overall, this work provides evidence that Leishmania exosomes function as viral envelopes, thereby facilitating LRV1 transmission and increasing infectivity in the mammalian host.


Asunto(s)
Exosomas/virología , Leishmania/fisiología , Leishmania/virología , Leishmaniasis/parasitología , Leishmaniavirus/fisiología , Animales , Femenino , Humanos , Leishmania/genética , Leishmania/patogenicidad , Ratones , Ratones Endogámicos BALB C , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA