Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mediators Inflamm ; 2015: 852574, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635449

RESUMEN

Cysteinyl leukotrienes (CysLTs) and lipoxins (LXs) are lipid mediators that control inflammation, with the former inducing and the latter inhibiting this process. Because the role played by these mediators in paracoccidioidomycosis was not investigated, we aimed to characterize the role of CysLT in the pulmonary infection developed by resistant (A/J) and susceptible (B10.A) mice. 48 h after infection, elevated levels of pulmonary LTC4 and LXA4 were produced by both mouse strains, but higher levels were found in the lungs of susceptible mice. Blocking the CysLTs receptor by MTL reduced fungal loads in B10.A, but not in A/J mice. In susceptible mice, MLT treatment led to reduced influx of PMN leukocytes, increased recruitment of monocytes, predominant synthesis of anti-inflammatory cytokines, and augmented expression of 5- and 15-lipoxygenase mRNA, suggesting a prevalent LXA4 activity. In agreement, MTL-treated macrophages showed reduced fungal burdens associated with decreased ingestion of fungal cells. Furthermore, the addition of exogenous LX reduced, and the specific blockade of the LX receptor increased the fungal loads of B10.A macrophages. This study showed for the first time that inhibition of CysLTs signaling results in less severe pulmonary paracoccidioidomycosis that occurs in parallel with elevated LX activity and reduced infection of macrophages.


Asunto(s)
Lipoxinas/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/microbiología , Paracoccidioides/patogenicidad , Paracoccidioidomicosis/etiología , Acetatos/farmacología , Animales , Araquidonato 5-Lipooxigenasa/deficiencia , Araquidonato 5-Lipooxigenasa/genética , Ciclopropanos , Dinoprostona/biosíntesis , Mediadores de Inflamación/metabolismo , Antagonistas de Leucotrieno/farmacología , Leucotrieno C4/biosíntesis , Lipoxinas/biosíntesis , Lipoxinas/inmunología , Macrófagos Alveolares/efectos de los fármacos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos A , Ratones Noqueados , Paracoccidioidomicosis/tratamiento farmacológico , Paracoccidioidomicosis/inmunología , Quinolinas/farmacología , Receptores de Leucotrienos/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Sulfuros
2.
Infect Immun ; 79(6): 2470-80, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21422180

RESUMEN

The mechanisms that govern the initial interaction between Paracoccidioides brasiliensis, a primary dimorphic fungal pathogen, and cells of the innate immunity need to be clarified. Our previous studies showed that Toll-like receptor 2 (TLR2) and TLR4 regulate the initial interaction of fungal cells with macrophages and the pattern of adaptive immunity that further develops. The aim of the present investigation was to assess the role of MyD88, an adaptor molecule used by TLRs to activate genes of the inflammatory response in pulmonary paracoccidioidomycosis. Studies were performed with normal and MyD88(-/-) C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells. MyD88(-/-) macrophages displayed impaired interaction with fungal yeast cells and produced low levels of IL-12, MCP-1, and nitric oxide, thus allowing increased fungal growth. Compared with wild-type (WT) mice, MyD88(-/-) mice developed a more severe infection of the lungs and had marked dissemination of fungal cells to the liver and spleen. MyD88(-/-) mice presented low levels of Th1, Th2, and Th17 cytokines, suppressed lymphoproliferation, and impaired influx of inflammatory cells to the lungs, and this group of cells comprised lower numbers of neutrophils, activated macrophages, and T cells. Nonorganized, coalescent granulomas, which contained high numbers of fungal cells, characterized the severe lesions of MyD88(-/-) mice; the lesions replaced extensive areas of several organs. Therefore, MyD88(-/-) mice were unable to control fungal growth and showed a significantly decreased survival time. In conclusion, our findings demonstrate that MyD88 signaling is important in the activation of fungicidal mechanisms and the induction of protective innate and adaptive immune responses against P. brasiliensis.


Asunto(s)
Factor 88 de Diferenciación Mieloide/fisiología , Paracoccidioides/inmunología , Paracoccidioidomicosis/inmunología , Inmunidad Adaptativa/inmunología , Animales , Inmunidad Innata/inmunología , Interleucina-18/biosíntesis , Leucocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Fagocitosis/inmunología , Transducción de Señal/inmunología , Receptores Toll-Like/fisiología
3.
Front Immunol ; 12: 630938, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936043

RESUMEN

In agreement with other fungal infections, immunoprotection in pulmonary paracoccidioidomycosis (PCM) is mediated by Th1/Th17 cells whereas disease progression by prevalent Th2/Th9 immunity. Treg cells play a dual role, suppressing immunity but also controlling excessive tissue inflammation. Our recent studies have demonstrated that the enzyme indoleamine 2,3 dioxygenase (IDO) and the transcription factor aryl hydrocarbon receptor (AhR) play an important role in the immunoregulation of PCM. To further evaluate the immunomodulatory activity of AhR in this fungal infection, Paracoccidioides brasiliensis infected mice were treated with two different AhR agonists, L-Kynurenin (L-Kyn) or 6-formylindole [3,2-b] carbazole (FICZ), and one AhR specific antagonist (CH223191). The disease severity and immune response of treated and untreated mice were assessed 96 hours and 2 weeks after infection. Some similar effects on host response were shared by FICZ and L-Kyn, such as the reduced fungal loads, decreased numbers of CD11c+ lung myeloid cells expressing activation markers (IA, CD40, CD80, CD86), and early increased expression of IDO and AhR. In contrast, the AhR antagonist CH223191 induced increased fungal loads, increased number of pulmonary CD11c+ leukocytes expressing activation markers, and a reduction in AhR and IDO production. While FICZ treatment promoted large increases in ILC3, L-Kyn and CH223191 significantly reduced this cell population. Each of these AhR ligands induced a characteristic adaptive immunity. The large expansion of FICZ-induced myeloid, lymphoid, and plasmacytoid dendritic cells (DCs) led to the increased expansion of all CD4+ T cell subpopulations (Th1, Th2, Th17, Th22, and Treg), but with a clear predominance of Th17 and Th22 subsets. On the other hand, L-Kyn, that preferentially activated plasmacytoid DCs, reduced Th1/Th22 development but caused a robust expansion of Treg cells. The AhR antagonist CH223191 induced a preferential expansion of myeloid DCs, reduced the number of Th1, Th22, and Treg cells, but increased Th17 differentiation. In conclusion, the present study showed that the pathogen loads and the immune response in pulmonary PCM can be modulated by AhR ligands. However, further studies are needed to define the possible use of these compounds as adjuvant therapy for this fungal infection.


Asunto(s)
Diferenciación Celular/inmunología , Ligandos , Linfocitos/fisiología , Paracoccidioidomicosis/inmunología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/inmunología , Índice de Severidad de la Enfermedad , Animales , Diferenciación Celular/genética , Inmunidad Innata , Inmunomodulación , Pulmón/inmunología , Enfermedades Pulmonares Fúngicas/inmunología , Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Células TH1/inmunología , Células Th17/inmunología
4.
Sci Rep ; 8(1): 16544, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30410119

RESUMEN

In human paracoccidioidomycosis (PCM), a primary fungal infection typically diagnosed when the disease is already established, regulatory T cells (Treg) cells are associated with disease severity. Experimental studies in pulmonary PCM confirmed the detrimental role of these cells, but in most studies, Tregs were depleted prior to or early during infection. These facts led us to study the effects of Treg cell depletion using a model of ongoing PCM. Therefore, Treg cell depletion was achieved by treatment of transgenic C57BL/6DTR/eGFP (DEREG) mice with diphtheria toxin (DT) after 3 weeks of intratracheal infection with 1 × 106 Paracoccidioides brasiliensis yeasts. At weeks 6 and 10 post-infection, DT-treated DEREG mice showed a reduced number of Treg cells associated with decreased fungal burdens in the lungs, liver and spleen, reduced tissue pathology and mortality. Additionally, an increased influx of activated CD4+ and CD8+ T cells into the lungs and elevated production of Th1/Th17 cytokines was observed in DT-treated mice. Altogether, our data demonstrate for the first time that Treg cell depletion in ongoing PCM rescues infected hosts from progressive and potentially fatal PCM; furthermore, our data indicate that controlling Treg cells could be explored as a novel immunotherapeutic procedure.


Asunto(s)
Toxina Diftérica/administración & dosificación , Paracoccidioidomicosis/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Células TH1/inmunología , Células Th17/inmunología , Animales , Toxina Diftérica/farmacología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Paracoccidioides/inmunología , Paracoccidioides/patogenicidad , Linfocitos T Reguladores/inmunología
5.
Front Immunol ; 9: 1914, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186285

RESUMEN

Immunotherapy has become an important ally in the fight against distinct types of cancer. However, the metabolic plasticity of the tumor environment frequently influences the efficacy of therapeutic procedures, including those based on immunological tools. In this scenario, immunometabolic adjuvants arise as an alternative toward the development of more efficient cancer therapies. Here we demonstrated that the combination of melatonin, a neuroimmunomodulator molecule, and an indoleamine 2,3-dioxygenase (IDO) inhibitor (1-methyl-DL-tryptophan, DL-1MT) improves the efficacy of an immunotherapy (gDE7) targeting human papillomavirus (HPV)-associated tumors. Melatonin or IDO inhibitors (D-1MT and DL-1MT) directly reduced proliferation, migration, adhesion and viability of a tumor cell line (TC-1), capable to express the HPV-16 E6 and E7 oncoproteins, but could not confer in vivo antitumor protection effects. Nonetheless, combination of gDE7 with melatonin or D-1MT or DL-1MT enhanced the antitumor protective immunity of gDE7-based vaccine in mice. Notably, expression of IDO1 in stromal cells and/or immune cells, but not in tumor cells, inhibited the antitumor effects of the gDE7, as demonstrated in IDO1-deficient mice. Finally, co-administration of gDE7, melatonin and DL-1MT further improved the protective antitumor effects and the numbers of circulating E7-specific CD8+ T cells in mice previously transplanted with TC-1 cells. The unprecedented combination of melatonin and IDO inhibitors, as immunometabolic adjuvants, thus, represents a new and promising alternative for improving the efficacy of immunotherapeutic treatments of HPV-associated tumors.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inhibidores Enzimáticos/farmacología , Papillomavirus Humano 16/inmunología , Inmunidad Celular/efectos de los fármacos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Melatonina/farmacología , Neoplasias Experimentales/prevención & control , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/farmacología , Animales , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Papillomavirus Humano 16/genética , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Ratones , Ratones Noqueados , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA