RESUMEN
The increased incidence of opportunistic fungal infections, associated with greater resistance to the antifungal drugs currently in use has highlighted the need for new solutions. In this study twenty four coumarin derivatives were screened in vitro for antifungal activity against strains of Aspergillus. Some of the compounds exhibited significant antifungal activity with MICs values ranging between 16 and 32 µg/mL. The structure-activity relationships (SAR) study demonstrated that O-substitutions are essential for antifungal activity. It also showed that the presence of a short aliphatic chain and/or electron withdrawing groups (NO(2) and/or acetate) favor activity. These findings were confirmed using density functional theory (DFT), when calculating the LUMO density. In Principal Component Analysis (PCA), two significant principal components (PCs) explained more than 60% of the total variance. The best Partial Least Squares Regression (PLS) model showed an r2 of 0.86 and q2(cv) of 0.64 corroborating the SAR observations as well as demonstrating a greater probe N1 interaction for active compounds. Descriptors generated by TIP correlogram demonstrated the importance of the molecular shape for antifungal activity.
Asunto(s)
Antifúngicos/farmacología , Aspergillus/efectos de los fármacos , Cumarinas/farmacología , Acetilación , Alquilación , Antifúngicos/síntesis química , Antifúngicos/química , Aspergillus/clasificación , Simulación por Computador , Cumarinas/síntesis química , Cumarinas/química , Análisis de los Mínimos Cuadrados , Pruebas de Sensibilidad Microbiana , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Nitratos/química , Análisis de Componente Principal , Relación Estructura-ActividadRESUMEN
There are two independent mol-ecules in the asymmetric unit of the title compound, C16H15NO4, which was isolated from fruits of Zanthoxylum leprieurii. The atoms of the three rings of each mol-ecule are close to coplanar with the largest deviations from the least-squares planes being 0.084â (3)â Å and 0.069â (2)â Å. Each molecule features an intramolecular O-H⯷O hydrogen bond. In the crystal, C-H⯷O hydrogen-bonding inter-actions link the mol-ecules into a three-dimensional network.
RESUMEN
Neglected parasitic diseases are a group of infections currently considered as a worldwide concern. This fact can be attributed to the migration of these diseases to developed and developing countries, associated with therapeutic insufficiency resulted from the low investment in the research and development of new drugs. In order to overcome this situation, bioprospecting supports medicinal chemistry in the identification of new scaffolds with therapeutically appropriate physicochemical and pharmacokinetic properties. Among them, we highlight the nitrogenous heterocyclic compounds, as they are secondary metabolites of many natural products with potential biological activity. The objective of this work was to review studies within a 10-year timeframe (2009- 2019), focusing on the pharmacological application of nitrogen bioprospectives (pyrrole, pyridine, indole, quinoline, acridine, and their respective derivatives) against neglected parasitic infections (malaria, leishmania, trypanosomiases, and schistosomiasis), and their application as a template for semi-synthesis or total synthesis of potential antiparasitic agents. In our studies, it was observed that among the selected articles, there was a higher focus on the attempt to identify and obtain novel antimalarial compounds, in a way that an extensive amount of studies involving all heterocyclic nitrogen nuclei were found. On the other hand, the parasites with the lowest number of publications up until the present date have been trypanosomiasis, especially those caused by Trypanosoma cruzi, and schistosomiasis, where some heterocyclics have not even been cited in recent years. Thus, we conclude that despite the great biodiversity on the planet, little attention has been given to certain neglected tropical diseases, especially those that reach countries with a high poverty rate.