Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nucleic Acids Res ; 50(15): 8471-8490, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35904805

RESUMEN

Correct B cell identity at each stage of cellular differentiation during B lymphocyte development is critically dependent on a tightly controlled epigenomic landscape. We previously identified HDAC7 as an essential regulator of early B cell development and its absence leads to a drastic block at the pro-B to pre-B cell transition. More recently, we demonstrated that HDAC7 loss in pro-B-ALL in infants associates with a worse prognosis. Here we delineate the molecular mechanisms by which HDAC7 modulates early B cell development. We find that HDAC7 deficiency drives global chromatin de-condensation, histone marks deposition and deregulates other epigenetic regulators and mobile elements. Specifically, the absence of HDAC7 induces TET2 expression, which promotes DNA 5-hydroxymethylation and chromatin de-condensation. HDAC7 deficiency also results in the aberrant expression of microRNAs and LINE-1 transposable elements. These findings shed light on the mechanisms by which HDAC7 loss or misregulation may lead to B cell-based hematological malignancies.


Asunto(s)
Linfocitos B/citología , Epigénesis Genética , Linfocitos B/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Epigenómica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos
2.
EMBO J ; 36(22): 3336-3355, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29038174

RESUMEN

Accumulation of tumor-associated macrophages (TAMs) associates with malignant progression in cancer. However, the mechanisms that drive the pro-tumor functions of TAMs are not fully understood. ZEB1 is best known for driving an epithelial-to-mesenchymal transition (EMT) in cancer cells to promote tumor progression. However, a role for ZEB1 in macrophages and TAMs has not been studied. Here we describe that TAMs require ZEB1 for their tumor-promoting and chemotherapy resistance functions in a mouse model of ovarian cancer. Only TAMs that expressed full levels of Zeb1 accelerated tumor growth. Mechanistically, ZEB1 expression in TAMs induced their polarization toward an F4/80low pro-tumor phenotype, including direct activation of Ccr2 In turn, expression of ZEB1 by TAMs induced Ccl2, Cd74, and a mesenchymal/stem-like phenotype in cancer cells. In human ovarian carcinomas, TAM infiltration and CCR2 expression correlated with ZEB1 in tumor cells, where along with CCL2 and CD74 determined poorer prognosis. Importantly, ZEB1 in TAMs was a factor of poorer survival in human ovarian carcinomas. These data establish ZEB1 as a key factor in the tumor microenvironment and for maintaining TAMs' tumor-promoting functions.


Asunto(s)
Carcinogénesis/patología , Macrófagos/metabolismo , Macrófagos/patología , Neoplasias/metabolismo , Neoplasias/patología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Antígenos de Diferenciación de Linfocitos B/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Quimiocina CCL2/farmacología , Factores Estimulantes de Colonias/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Monocitos/efectos de los fármacos , Monocitos/patología , Neoplasias/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fenotipo , Receptores CCR2/metabolismo , Análisis de Supervivencia , Regulación hacia Arriba/efectos de los fármacos
3.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803872

RESUMEN

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a highly aggressive malignancy, with poorer prognosis in infants than in adults. A genetic signature has been associated with this outcome but, remarkably, leukemogenesis is commonly triggered by genetic alterations of embryonic origin that involve the deregulation of chromatin remodelers. This review considers in depth how the alteration of epigenetic profiles (at DNA and histone levels) induces an aberrant phenotype in B lymphocyte progenitors by modulating the oncogenic drivers and tumor suppressors involved in key cancer hallmarks. DNA methylation patterns have been widely studied in BCP-ALL and their correlation with survival has been established. However, the effect of methylation on histone residues can be very different. For instance, methyltransferase KMT2A gene participates in chromosomal rearrangements with several partners, imposing an altered pattern of methylated H3K4 and H3K79 residues, enhancing oncogene promoter activation, and conferring a worse outcome on affected infants. In parallel, acetylation processes provide an additional layer of epigenetic regulation and can alter the chromatin conformation, enabling the binding of regulatory factors. Therefore, an integrated knowledge of all epigenetic disorders is essential to understand the molecular basis of BCP-ALL and to identify novel entry points that can be exploited to improve therapeutic options and disease prognosis.


Asunto(s)
Epigénesis Genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Metilación de ADN/genética , Regulación Leucémica de la Expresión Génica , Histonas/metabolismo , Humanos , Lactante , Procesamiento Proteico-Postraduccional
4.
Gut ; 68(12): 2129-2141, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31366457

RESUMEN

OBJECTIVE: Chronic inflammation is a risk factor in colorectal cancer (CRC) and reactive oxygen species (ROS) released by the inflamed stroma elicit DNA damage in epithelial cells. We sought to identify new drivers of ulcerative colitis (UC) and inflammatory CRC. DESIGN: The study uses samples from patients with UC, mouse models of colitis and CRC and mice deficient for the epithelial-to-mesenchymal transition factor ZEB1 and the DNA repair glycosylase N-methyl-purine glycosylase (MPG). Samples were analysed by immunostaining, qRT-PCR, chromatin immunoprecipitation assays, microbiota next-generation sequencing and ROS determination. RESULTS: ZEB1 was induced in the colonic epithelium of UC and of mouse models of colitis. Compared with wild-type counterparts, Zeb1-deficient mice were partially protected from experimental colitis and, in a model of inflammatory CRC, they developed fewer tumours and exhibited lower levels of DNA damage (8-oxo-dG) and higher expression of MPG. Knockdown of ZEB1 in CRC cells inhibited 8-oxo-dG induction by oxidative stress (H2O2) and inflammatory cytokines (interleukin (IL)1ß). ZEB1 bound directly to the MPG promoter whose expression inhibited. This molecular mechanism was validated at the genetic level and the crossing of Zeb1-deficient and Mpg-deficient mice reverted the reduced inflammation and tumourigenesis in the former. ZEB1 expression in CRC cells induced ROS and IL1ß production by macrophages that, in turn, lowered MPG in CRC cells thus amplifying a positive loop between both cells to promote DNA damage and inhibit DNA repair. CONCLUSIONS: ZEB1 promotes colitis and inflammatory CRC through the inhibition of MPG in epithelial cells, thus offering new therapeutic strategies to modulate inflammation and inflammatory cancer.


Asunto(s)
Colitis Ulcerosa/genética , Neoplasias del Colon/genética , ADN Glicosilasas/genética , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Experimentales , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Animales , Biopsia , Células Cultivadas , Colitis Ulcerosa/complicaciones , Colitis Ulcerosa/metabolismo , Neoplasias del Colon/etiología , Neoplasias del Colon/patología , ADN Glicosilasas/metabolismo , Reparación del ADN , Células Epiteliales/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Neoplásico/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Dedos de Zinc
5.
Gut ; 66(4): 666-682, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27965283

RESUMEN

OBJECTIVE: Understand the role of ZEB1 in the tumour initiation and progression beyond inducing an epithelial-to-mesenchymal transition. DESIGN: Expression of the transcription factor ZEB1 associates with a worse prognosis in most cancers, including colorectal carcinomas (CRCs). The study uses survival analysis, in vivo mouse transgenic and xenograft models, gene expression arrays, immunostaining and gene and protein regulation assays. RESULTS: The poorer survival determined by ZEB1 in CRCs depended on simultaneous high levels of the Wnt antagonist DKK1, whose expression was transcriptionally activated by ZEB1. In cancer cells with mutant TP53, ZEB1 blocked the formation of senescence-associated heterochromatin foci at the onset of senescence by triggering a new regulatory cascade that involves the subsequent activation of DKK1, mutant p53, Mdm2 and CtBP to ultimately repress macroH2A1 (H2AFY). In a transgenic mouse model of colon cancer, partial downregulation of Zeb1 was sufficient to induce H2afy and to trigger in vivo tumour senescence, thus resulting in reduced tumour load and improved survival. The capacity of ZEB1 to induce tumourigenesis in a xenograft mouse model requires the repression of H2AFY by ZEB1. Lastly, the worst survival effect of ZEB1 in patients with CRC ultimately depends on low expression of H2AFY and of senescence-associated genes. CONCLUSIONS: The tumourigenic capacity of ZEB1 depends on its inhibition of cancer cell senescence through the activation of a herein identified new molecular pathway. These results set ZEB1 as a potential target in therapeutic strategies aimed at inducing senescence.


Asunto(s)
Carcinogénesis/genética , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Histonas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Senescencia Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Transgénicos , Mutación , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Tasa de Supervivencia , Transcripción Genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Vía de Señalización Wnt , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
6.
Biochim Biophys Acta ; 1866(2): 300-319, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27742530

RESUMEN

The hallmarks of cancer capture the most essential phenotypic characteristics of malignant transformation and progression. Although numerous factors involved in this multi-step process are still unknown to date, an ever-increasing number of mutated/altered candidate genes are being identified within large-scale cancer genomic projects. Therefore, investigators need to be aware of available and appropriate techniques capable of determining characteristic features of each hallmark. We review the methods tailored to experimental cancer researchers to evaluate cell proliferation, programmed cell death, replicative immortality, induction of angiogenesis, invasion and metastasis, genome instability, and reprogramming of energy metabolism. Selecting the ideal method is based on the investigator's goals, available equipment and also on financial constraints. Multiplexing strategies enable a more in-depth data collection from a single experiment - obtaining several results from a single procedure reduces variability and saves time and relative cost, leading to more robust conclusions compared to a single end point measurement. Each hallmark possesses characteristics that can be analyzed by immunoblot, RT-PCR, immunocytochemistry, immunoprecipitation, RNA microarray or RNA-seq. In general, flow cytometry, fluorescence microscopy, and multiwell readers are extremely versatile tools and, with proper sample preparation, allow the detection of a vast number of hallmark features. Finally, we also provide a list of hallmark-specific genes to be measured in transcriptome-level studies. Although our list is not exhaustive, we provide a snapshot of the most widely used methods, with an emphasis on methods enabling the simultaneous evaluation of multiple hallmark features.


Asunto(s)
Neoplasias/patología , Apoptosis , Caspasas/análisis , Proliferación Celular , Metabolismo Energético , Epigénesis Genética , Inestabilidad Genómica , Guías como Asunto , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neovascularización Patológica/etiología , Telómero
7.
Proc Natl Acad Sci U S A ; 108(48): 19204-9, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-22080605

RESUMEN

In most carcinomas, invasion of malignant cells into surrounding tissues involves their molecular reprogramming as part of an epithelial-to-mesenchymal transition (EMT). Mutation of the APC gene in most colorectal carcinomas (CRCs) contributes to the nuclear translocation of the oncoprotein ß-catenin that upon binding to T-cell and lymphoid enhancer (TCF-LEF) factors triggers an EMT and a proinvasive gene expression profile. A key inducer of EMT is the ZEB1 transcription factor whose expression promotes tumorigenesis and metastasis in carcinomas. As inhibitor of the epithelial phenotype, ZEB1 is never present in the epithelium of normal colon or the tumor center of CRCs where ß-catenin remains membranous. We show here that ZEB1 is expressed by epithelial cells in intestinal tumors from human patients (familial adenomatous polyposis) and mouse models (APC(Min/+)) with germline mutations of APC that result in nuclear accumulation of ß-catenin. However, ZEB1 is not expressed in the epithelium of hereditary forms of CRCs that carry wild-type APC and where ß-catenin is excluded from the nucleus (Lynch syndrome). We found that ß-catenin/TCF4 binds directly to the ZEB1 promoter and activates its transcription. Knockdown of ß-catenin and TCF4 in APC-mutated CRC cells inhibited endogenous ZEB1, whereas forced translocation of ß-catenin to the nucleus in APC-wild-type CRC cells induced de novo expression of ZEB1. Upregulation of MT1-MMP and LAMC2 by ß-catenin/TCF4 has been linked to invasiveness in CRCs, and we show here that both proteins are activated by ZEB1 coexpressing with it in primary colorectal tumors with mutated APC. These results set ZEB1 as an effector of ß-catenin/TCF4 signaling in EMT and tumor progression.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Complejos Multiproteicos/metabolismo , Invasividad Neoplásica/fisiopatología , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Ratones , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Factor de Transcripción 4 , Factores de Transcripción/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , beta Catenina/genética
8.
Cell Mol Life Sci ; 69(20): 3429-56, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22945800

RESUMEN

Cancer is a complex multistep process involving genetic and epigenetic changes that eventually result in the activation of oncogenic pathways and/or inactivation of tumor suppressor signals. During cancer progression, cancer cells acquire a number of hallmarks that promote tumor growth and invasion. A crucial mechanism by which carcinoma cells enhance their invasive capacity is the dissolution of intercellular adhesions and the acquisition of a more motile mesenchymal phenotype as part of an epithelial-to-mesenchymal transition (EMT). Although many transcription factors can trigger it, the full molecular reprogramming occurring during an EMT is mainly orchestrated by three major groups of transcription factors: the ZEB, Snail and Twist families. Upregulated expression of these EMT-activating transcription factors (EMT-ATFs) promotes tumor invasiveness in cell lines and xenograft mice models and has been associated with poor clinical prognosis in human cancers. Evidence accumulated in the last few years indicates that EMT-ATFs also regulate an expanding set of cancer cell capabilities beyond tumor invasion. Thus, EMT-ATFs have been shown to cooperate in oncogenic transformation, regulate cancer cell stemness, override safeguard programs against cancer like apoptosis and senescence, determine resistance to chemotherapy and promote tumor angiogenesis. This article reviews the expanding portfolio of functions played by EMT-ATFs in cancer progression.


Asunto(s)
Factores de Transcripción Activadores/metabolismo , Transformación Celular Neoplásica/patología , Transición Epitelial-Mesenquimal , Neoplasias/metabolismo , Neoplasias/patología , Animales , Humanos , Ratones , Invasividad Neoplásica
9.
Biochem J ; 441(1): 173-8, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21895609

RESUMEN

Positive allosteric modulators of the ionotropic glutamate receptor-2 (GluA2) are promising compounds for the treatment of cognitive disorders, e.g. Alzheimer's disease. These modulators bind within the dimer interface of the LBD (ligand-binding domain) and stabilize the agonist-bound conformation slowing receptor desensitization and/or deactivation. In the present study, we employ isothermal titration calorimetry to determine binding affinities and thermodynamic details of binding of modulators of GluA2. A mutant of the LBD of GluA2 (LBD-L483Y-N754S) that forms a stable dimer in solution was used. The potent GluA2 modulator BPAM-97 was used as a reference compound. Evidence that BPAM-97 binds in the same pocket as the well-known GluA2 modulator cyclothiazide was obtained from X-ray structures. The LBD-L483Y-N754S:BPAM-97 complex has a Kd of 5.6 µM (ΔH=-4.9 kcal/mol, -TΔS=-2.3 kcal/mol; where 1 kcal≈4.187 kJ). BPAM-97 was used in a displacement assay to determine a Kd of 0.46 mM (ΔH=-1.2 kcal/mol, -TΔS=-3.3 kcal/mol) for the LBD-L483Y-N754S:IDRA-21 complex. The major structural factors increasing the potency of BPAM-97 over IDRA-21 are the increased van der Waals contacts to, primarily, Met496 in GluA2 imposed by the ethyl substituent of BPAM-97. These results add important information on binding affinities and thermodynamic details, and provide a new tool in the development of drugs against cognitive disorders.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Receptores AMPA/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Benzotiadiazinas/farmacología , Calorimetría/métodos , Cristalización , Óxidos S-Cíclicos/farmacología , Diuréticos/farmacología , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Receptores AMPA/genética , Receptores Ionotrópicos de Glutamato/genética , Termodinámica , Tiadiazinas/farmacología
10.
Cells ; 9(2)2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102485

RESUMEN

The transcription factor MYC is transiently expressed during B lymphocyte development, and its correct modulation is essential in defined developmental transitions. Although temporary downregulation of MYC is essential at specific points, basal levels of expression are maintained, and its protein levels are not completely silenced until the B cell becomes fully differentiated into a plasma cell or a memory B cell. MYC has been described as a proto-oncogene that is closely involved in many cancers, including leukemia and lymphoma. Aberrant expression of MYC protein in these hematological malignancies results in an uncontrolled rate of proliferation and, thereby, a blockade of the differentiation process. MYC is not activated by mutations in the coding sequence, and, as reviewed here, its overexpression in leukemia and lymphoma is mainly caused by gene amplification, chromosomal translocations, and aberrant regulation of its transcription. This review provides a thorough overview of the role of MYC in the developmental steps of B cells, and of how it performs its essential function in an oncogenic context, highlighting the importance of appropriate MYC regulation circuitry.


Asunto(s)
Linfocitos B/metabolismo , Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , Leucemia/metabolismo , Linfoma/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Niño , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia/patología , Linfoma/patología , Ratones , Proto-Oncogenes Mas , Translocación Genética , Adulto Joven
12.
Clin Cancer Res ; 19(5): 1071-82, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23340304

RESUMEN

PURPOSE: Carcinoma cells enhance their invasive capacity through dedifferentiation and dissolution of intercellular adhesions. A key activator of this process is the ZEB1 transcription factor, which is induced in invading cancer cells by canonical Wnt signaling (ß-catenin/TCF4). Tumor invasiveness also entails proteolytic remodeling of the peritumoral stroma. This study aimed to investigate the potential regulation by ZEB1 of the plasminogen proteolytic system constituted by the urokinase plasminogen activator (uPA), and its inhibitor, plasminogen activator inhibitor-1 (PAI-1). EXPERIMENTAL DESIGN: Through multiple experimental approaches, colorectal carcinoma (CRC) cell lines and samples from human primary CRC and ZEB1 (-/-) mice were used to examine ZEB1-mediated regulation of uPA and PAI-1 at the protein, mRNA, and transcriptional level. RESULTS: ZEB1 regulates uPA and PAI-1 in opposite directions: induces uPA and inhibits PAI-1. In vivo expression of uPA depends on ZEB1 as it is severely reduced in the developing intestine of ZEB1 null (-/-) mice. Optimal induction of uPA by Wnt signaling requires ZEB1 expression. ZEB1 binds to the uPA promoter and activates its transcription through a mechanism implicating the histone acetyltransferase p300. In contrast, inhibition of PAI-1 by ZEB1 does not involve transcriptional repression but rather downregulation of mRNA stability. ZEB1-mediated tumor cell migration and invasion depend on its induction of uPA. ZEB1 coexpresses with uPA in cancer cells at the invasive front of CRCs. CONCLUSIONS: ZEB1 promotes tumor invasiveness not only via induction in cancer cells of a motile dedifferentiated phenotype but also by differential regulation of genes involved in stroma remodeling.


Asunto(s)
Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/fisiología , Factores de Transcripción de Tipo Kruppel/fisiología , Inhibidor 1 de Activador Plasminogénico/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Animales , Western Blotting , Movimiento Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Invasividad Neoplásica , Inhibidor 1 de Activador Plasminogénico/genética , Regiones Promotoras Genéticas , Estabilidad del ARN , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética , Activador de Plasminógeno de Tipo Uroquinasa/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
13.
Am J Cancer Res ; 1(7): 897-912, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22016835

RESUMEN

The ZEB family of transcription factors regulates key factors during embryonic development and cell differentiation but their role in cancer biology has only more recently begun to be recognized. Early evidence showed that ZEB proteins induce an epithelial-to-mesenchymal transition linking their expression with increased aggressiveness and metastasis in mice models and a wide range of primary human carcinomas. Reports over the last few years have found that ZEB proteins also play critical roles in the maintenance of cancer cell stemness, control of replicative senescence, tumor angiogenesis, overcoming of oncogenic addiction and resistance to chemotherapy. These expanding roles in tumorigenesis and tumor progression set ZEB proteins as potential diagnostic, prognostic and therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA