Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Genet Genomics ; 298(3): 721-733, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37020053

RESUMEN

DNA methylation may be involved in the development of osteosarcomas. Osteosarcomas commonly arise during the bone growth and remodeling in puberty, making it plausible to infer the involvement of epigenetic alterations in their development. As a highly studied epigenetic mechanism, we investigated DNA methylation and related genetic variants in 28 primary osteosarcomas aiming to identify deregulated driver alterations. Methylation and genomic data were obtained using the Illumina HM450K beadchips and the TruSight One sequencing panel, respectively. Aberrant DNA methylation was spread throughout the osteosarcomas genomes. We identified 3146 differentially methylated CpGs comparing osteosarcomas and bone tissue samples, with high methylation heterogeneity, global hypomethylation and focal hypermethylation at CpG islands. Differentially methylated regions (DMR) were detected in 585 loci (319 hypomethylated and 266 hypermethylated), mapped to the promoter regions of 350 genes. These DMR genes were enriched for biological processes related to skeletal system morphogenesis, proliferation, inflammatory response, and signal transduction. Both methylation and expression data were validated in independent groups of cases. Six tumor suppressor genes harbored deletions or promoter hypermethylation (DLEC1, GJB2, HIC1, MIR149, PAX6, and WNT5A), and four oncogenes presented gains or hypomethylation (ASPSCR1, NOTCH4, PRDM16, and RUNX3). Our analysis also revealed hypomethylation at 6p22, a region that contains several histone genes. Copy-number changes in DNMT3B (gain) and TET1 (loss), as well as overexpression of DNMT3B in osteosarcomas provide a possible explanation for the observed phenotype of CpG island hypermethylation. While the detected open-sea hypomethylation likely contributes to the well-known osteosarcoma genomic instability, enriched CpG island hypermethylation suggests an underlying mechanism possibly driven by overexpression of DNMT3B likely resulting in silencing of tumor suppressors and DNA repair genes.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , Humanos , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Islas de CpG/genética , Metilación de ADN/genética , Epigénesis Genética , Oxigenasas de Función Mixta/genética , Osteosarcoma/genética , Osteosarcoma/patología , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo
2.
Ann Hum Genet ; 85(1): 18-26, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32761927

RESUMEN

Mosaic segmental and whole chromosome copy number alterations are postzygotic variations known to be associated with several disorders. We have previously presented an efficient targeted sequencing approach to simultaneously detect point mutations and copy number variations (CNVs). In this study, we evaluated the efficiency of this approach to detect mosaic CNVs, using seven postnatal and 19 tumor samples, previously characterized by chromosomal microarray analyses (CMA). These samples harbored a total of 28 genomic imbalances ranging in size from 0.68 to 171 Mb, and present in 10-80% of the cells. All CNV regions covered by the platform were correctly identified in postnatal samples, and only seven out of 19 CNVs from tumor samples were not identified either because of a lack of target probes in the affected genomic regions or an absence of minimum reads for an alteration call. These results demonstrate that, in a research setting, this is a robust approach for detecting mosaicism in cases of segmental and whole chromosome alterations. Although the current sequencing platform presented a resolution similar to genomic microarrays, it is still necessary to further validate this approach in a clinical setting in order to replace CMA and sequencing analyses by a single test.


Asunto(s)
Variaciones en el Número de Copia de ADN , Pruebas Genéticas/métodos , Mosaicismo , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias/genética , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA