Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant Cell ; 29(12): 3198-3213, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29114015

RESUMEN

Salinity of the soil is highly detrimental to plant growth. Plants respond by a redistribution of root mass between main and lateral roots, yet the genetic machinery underlying this process is still largely unknown. Here, we describe the natural variation among 347 Arabidopsis thaliana accessions in root system architecture (RSA) and identify the traits with highest natural variation in their response to salt. Salt-induced changes in RSA were associated with 100 genetic loci using genome-wide association studies. Two candidate loci associated with lateral root development were validated and further investigated. Changes in CYP79B2 expression in salt stress positively correlated with lateral root development in accessions, and cyp79b2 cyp79b3 double mutants developed fewer and shorter lateral roots under salt stress, but not in control conditions. By contrast, high HKT1 expression in the root repressed lateral root development, which could be partially rescued by addition of potassium. The collected data and multivariate analysis of multiple RSA traits, available through the Salt_NV_Root App, capture root responses to salinity. Together, our results provide a better understanding of effective RSA remodeling responses, and the genetic components involved, for plant performance in stress conditions.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Estrés Salino/genética , Adaptación Fisiológica/efectos de los fármacos , Alelos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ecotipo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Variación Genética , Estudio de Asociación del Genoma Completo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Estrés Salino/efectos de los fármacos , Cloruro de Sodio/farmacología , Simportadores/genética , Simportadores/metabolismo
2.
Plant Physiol ; 166(3): 1387-402, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25271266

RESUMEN

The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na(+)/K(+) ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked.


Asunto(s)
Arabidopsis/fisiología , Raíces de Plantas/fisiología , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Ecotipo , Etilenos/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Potasio/metabolismo , Salinidad , Tolerancia a la Sal , Sales (Química)/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Sodio/metabolismo
3.
J Exp Bot ; 64(8): 2435-48, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23599276

RESUMEN

Brassinosteroids (BRs) are steroidal plant hormones that play an important role in the growth and development of plants. The biosynthesis of sterols and BRs as well as the signalling cascade they induce in plants have been elucidated largely through metabolic studies and the analysis of mutants in Arabidopsis and rice. Only fragmentary details about BR signalling in other plant species are known. Here a forward genetics strategy was used in Petunia hybrida, by which 19 families with phenotypic alterations typical for BR deficiency mutants were identified. In all mutants, the endogenous BR levels were severely reduced. In seven families, the tagged genes were revealed as the petunia BR biosynthesis genes CYP90A1 and CYP85A1 and the BR receptor gene BRI1. In addition, several homologues of key regulators of the BR signalling pathway were cloned from petunia based on homology with their Arabidopsis counterparts, including the BRI1 receptor, a member of the BES1/BZR1 transcription factor family (PhBEH2), and two GSK3-like kinases (PSK8 and PSK9). PhBEH2 was shown to interact with PSK8 and 14-3-3 proteins in yeast, revealing similar interactions to those during BR signalling in Arabidopsis. Interestingly, PhBEH2 also interacted with proteins implicated in other signalling pathways. This suggests that PhBEH2 might function as an important hub in the cross-talk between diverse signalling pathways.


Asunto(s)
Brasinoesteroides/biosíntesis , Petunia/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Transducción de Señal/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/fisiología , Genes de Plantas/genética , Genes de Plantas/fisiología , Mutación/genética , Mutación/fisiología , Petunia/genética , Petunia/fisiología , Filogenia , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Transducción de Señal/genética , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/fisiología
4.
Front Plant Sci ; 12: 697136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381482

RESUMEN

The involvement of the different Lactuca species in the domestication and diversification of cultivated lettuce is not totally understood. Lactuca serriola is considered as the direct ancestor and the closest relative to Lactuca sativa, while the other wild species that can be crossed with L. sativa, Lactuca virosa, and Lactuca saligna, would have just contributed to the latter diversification of cultivated typologies. To contribute to the study of Lactuca evolution, we assembled the mtDNA genomes of nine Lactuca spp. accessions, among them three from L. virosa, whose mtDNA had not been studied so far. Our results unveiled little to no intraspecies variation among Lactuca species, with the exception of L. serriola where the accessions we sequenced diverge significantly from the mtDNA of a L. serriola accession already reported. Furthermore, we found a remarkable phylogenetic closeness between the mtDNA of L. sativa and the mtDNA of L. virosa, contrasting to the L. serriola origin of the nuclear and plastidial genomes. These results suggest that a cross between L. virosa and the ancestor of cultivated lettuce is at the origin of the actual mitochondrial genome of L. sativa.

5.
Mol Breed ; 37(5): 58, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28479863

RESUMEN

Global warming has become a worldwide concern due to its adverse effects on agricultural output. In particular, long-term mildly high temperatures interfere with sexual reproduction and thus fruit and seed set. To uncover the genetic basis of observed variation in tolerance against heat, a bi-parental F2 mapping population from two contrasting cultivars, i.e. Nagcarlang and NCHS-1, was generated and phenotyped under continuous mild heat conditions for a number of traits underlying reproductive success, i.e. pollen viability, pollen number, style length, anther length, style protrusion, female fertility and flowering characteristics, i.e. inflorescence number and flowers per inflorescence. Quantitative trait loci (QTLs) were identified for most of these traits, including a single, highly significant one for pollen viability, which accounted for 36% of phenotypic variation in the population and modified pollen viability under high temperature with around 20%. QTLs for some traits colocalised, indicating trait dependency or pleiotropic-effect loci. We conclude that a limited set of major genes determines differences in performance of reproductive traits under continuous mild heat in tomato. The results contribute to our fundamental understanding of pollen thermotolerance and may support development of more heat-tolerant tomato varieties.

6.
J Plant Physiol ; 171(6): 438-47, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24594396

RESUMEN

HKT1 has been shown to be essential in Na(+) homeostasis in plants. In this paper, we report the analysis of Na(+) accumulation in different plant organs of two tomato species with contrasting salt tolerances: Solanum lycopersicum and Solanum pennellii. Furthermore, we relate these differences in Na(+) accumulation between the two species to the differences in HKT1;2 transport kinetics and HKT1;2 expression. S. lycopersicum showed "Na(+) excluder" behaviour, whereas S. pennellii showed "Na(+) includer" behaviour. SlHKT1;2 expression, in contrast to SpHKT1;2 expression showed a significant effect of NaCl treatment, especially stems had a high increase in SlHKT1;2 expression. SlHKT1;2 promoter-GUS reporter gene analysis showed that SlHKT1;2 is expressed in the vasculature surrounding the roots and shoots of transformed Arabidopsis plants. In this paper, we present HKT1;2 protein sequences of both tomato species and provide evidence that both SlHKT1;2 and SpHKT1;2 are Na(+) transporters. Our kinetic studies showed that SpHKT1;2, in comparison with SlHKT1;2, had a lower affinity for Na(+). This low affinity of SpHKT1;2 correlated with higher xylem Na(+) and higher accumulation of Na(+) in stems and leaves of S. pennellii. Our findings demonstrate the importance of the understanding of transport characteristics of HKT1;2 transporters to improve the understanding of Na(+) homeostasis in plants.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Sodio/metabolismo , Solanum lycopersicum/metabolismo , Simportadores/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/genética , Genes Reporteros , Solanum lycopersicum/citología , Solanum lycopersicum/genética , Datos de Secuencia Molecular , Oocistos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Potasio/análisis , Potasio/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Sodio/análisis , Cloruro de Sodio/farmacología , Especificidad de la Especie , Simportadores/genética , Xenopus , Xilema/genética , Xilema/metabolismo
7.
Front Plant Sci ; 5: 600, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25408697

RESUMEN

Single Nucleotide Polymorphisms (SNPs) within the coding sequence of HKT transporters are important for the functioning of these transporters in several plant species. To unravel the functioning of HKT transporters analysis of natural variation and multiple site-directed mutations studies are crucial. Also the in vivo functioning of HKT proteins, via complementation studies performed with athkt1;1 plants, could provide essential information about these transporters. In this work, we analyzed the natural variation present in the first pore domain of the HKT1;2 coding sequence of 93 different tomato accessions, which revealed that this region was conserved among all accessions analyzed. Analysis of mutations introduced in the first pore domain of the SlHKT1;2 gene showed, when heterologous expressed in Xenopus laevis oocytes, that the replacement of S70 by a G allowed SlHKT2;1 to transport K(+), but also caused a large reduction in both Na(+) and K(+) mediated currents. The study of the transport characteristics of SlHKT1;2 revealed that Na(+)-transport by the tomato SlHKT1;2 protein was inhibited by the presence of K(+) at the outside of the membrane. GUS expression under the AtHKT1;1 promoter gave blue staining in the vascular system of transgenic Arabidopsis. athkt1;1 mutant plants transformed with AtHKT1;1, SlHKT1;2, AtHKT1;1S68G, and SlHKT1;2S70G indicated that both AtHKT1;1 and SlHKT1;2 were able to restore the accumulation of K(+) in the shoot, although the low accumulation of Na(+) as shown by WT plants was only partially restored. The inhibition of Na(+) transport by K(+), shown by the SlHKT1;2 transporter in oocytes (and not by AtHKT1;1), was not reflected in Na(+) accumulation in the plants transformed with SlHKT1;2. Both AtHKT1;1-S68G and SlHKT1;2-S70G were not able to restore the phenotype of athkt1;1 mutant plants.

8.
AoB Plants ; 62014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24996430

RESUMEN

One of the major abiotic stresses affecting agriculture is soil salinity, which reduces crop yield and, consequently, revenue for farmers. Although tomato is an important agricultural species, elite varieties are poor at withstanding salinity stress. Thus, a feasible way of improving yield under conditions of salinity stress is to breed for improved salt tolerance. In this study, we analysed the physiological and genetic parameters of 23 tomato accessions in order to identify possible traits to be used by plant breeders to develop more tolerant tomato varieties. Although we observed a wide range of Na(+) concentrations within the leaves, stems and roots, the maintenance of growth in the presence of 100 mM NaCl did not correlate with the exclusion or accumulation of Na(+). Nor could we correlate the growth with accumulation of sugars and proline or with the expression of any gene involved in the homoeostasis of Na(+) in the plant. However, several significant correlations between gene expression and Na(+) accumulation were observed. For instance, Na(+) concentrations both in the leaves and stems were positively correlated with HKT1;2 expression in the roots, and Na(+) concentration measured in the roots was positively correlated with HKT1;1 expression also in the roots. Higher and lower Na(+) accumulation in the roots and leaves were significantly correlated with higher NHX3 and NHX1 expression in the roots, respectively. These results suggest that, in tomato, for a particular level of tolerance to salinity, a complex relationship between Na(+) concentration in the cells and tissue tolerance defines the salinity tolerance of individual tomato accessions. In tomato it is likely that tissue and salinity tolerance work independently, making tolerance to salinity depend on their relative effects rather than on one of these mechanisms alone.

9.
Plant Physiol ; 129(4): 1700-9, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12177483

RESUMEN

Acyl-coenzyme A (CoA) synthetases (ACSs, EC 6.2.1.3) catalyze the formation of fatty acyl-CoAs from free fatty acid, ATP, and CoA. Essentially all de novo fatty acid synthesis occurs in the plastid. Fatty acids destined for membrane glycerolipid and triacylglycerol synthesis in the endoplasmic reticulum must be first activated to acyl-CoAs via an ACS. Within a family of nine ACS genes from Arabidopsis, we identified a chloroplast isoform, LACS9. LACS9 is highly expressed in developing seeds and young rosette leaves. Both in vitro chloroplast import assays and transient expression of a green fluorescent protein fusion indicated that the LACS9 protein is localized in the plastid envelope. A T-DNA knockout mutant (lacs9-1) was identified by reverse genetics and these mutant plants were indistinguishable from wild type in growth and appearance. Analysis of leaf lipids provided no evidence for compromised export of acyl groups from chloroplasts. However, direct assays demonstrated that lacs9-1 plants contained only 10% of the chloroplast long-chain ACS activity found for wild type. The residual long-chain ACS activity in mutant chloroplasts was comparable with calculated rates of fatty acid synthesis. Although another isozyme contributes to the activation of fatty acids during their export from the chloroplast, LACS9 is a major chloroplast ACS.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos/metabolismo , Coenzima A Ligasas/genética , Ácidos Grasos/metabolismo , Acilcoenzima A/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimología , Coenzima A Ligasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mutación , Cebollas/genética , Cebollas/metabolismo , Pisum sativum/citología , Pisum sativum/metabolismo , Fenotipo , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA