Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Total Environ ; 921: 171087, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387577

RESUMEN

Soil salinization poses a significant challenge to the sustainable advancement of agriculture on a global scale. This environmental issue not only hampers plant growth and soil fertility but also hinders the advancement of the national economy due to restrictions on plant development. The utilization of organic and/or inorganic amendments has demonstrated the ability to mitigate the detrimental impacts of salt stress on plant life. At the outset, this review, in addition to summarizing current knowledge about soil amendments for saline-sodic soils, also aims to identify knowledge gaps requiring further research. The organic or inorganic amendments modify soil conditions and impact plant development. For instance, organic amendments have the potential to improve the structure of the soil, augment its capacity to retain water, and stimulate microbial activity. As this occurs, salts gradually leach through the porous structure of the soil. Conversely, inorganic amendments, such as gypsum and phosphogypsum, displace sodium from soil-negative sorption sites reducing the salinity, they also increase base saturation, altogether positively impacting plant growth conditions. This review emphasizes that, under adequate rates, the combination of organic and inorganic amendment has a high potential to enhance the poor physicochemical properties of saline-sodic soils, thereby reducing their salinity. Consequently, an in-depth examination of the mineral composition, texture, and chemical composition of the soil is required to choose the most effective amendment to implement. Future research necessitates a thorough investigation of techno-economic and life cycle assessment, with active involvement from stakeholders, to enhance the decision-making process of the amendments in specific localities.

2.
Environ Sci Pollut Res Int ; 30(57): 120793-120804, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37940822

RESUMEN

The mining and metallurgical industry sector activities often release potential toxic elements (PTE) surrounding exploitation area. We evaluated the addition of phosphate and lime using the dosage of 0.5:1, 1:1, and 2:1 molar ratio of PO43- and CO32- to the sum of PTE, respectively, and also, biochar and biosolids using the dosage of 2.5, 5, and 10% (m:m) to immobilize PTE in contaminated forest soil (Pb (270 mg kg-1) and Zn (858 mg kg-1)) near an abandoned mine site in Brazil. The desorption by stirred flow kinetics revealed that 15% of the total Zn and 12% Pb contents are mobile before any amendment application. Phosphate amendment decreased Pb desorption but increased Zn desorption. Biochar and biosolids immobilize high amounts of Zn and Pb because of their high cation exchange capacities and alkaline properties; however, 20% biosolid dose increased Pb desorption. X-ray absorption spectroscopy suggested Zn-kerolite as the major species in the contaminated soil, likely from mine dust. The change in Zn speciation after soil amendment addition indicated that biochar and lime kept a high proportion of Zn-Al species, whereas phosphate and biosolids led to more Zn-Fe species. Our results pointed out that lime might reduce both Pb and Zn mobilities; however, field trials are crucial to confirm the immobilization efficiency of lime and other amendments over long term.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biosólidos , Plomo , Fosfatos/química , Carbón Orgánico/química , Suelo/química , Zinc/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis
3.
Food Chem ; 412: 135548, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36738531

RESUMEN

The purpose of this research was to evaluate performance of an energy-dispersive X-ray fluorescence (XRF) sensor to classify soybean based on protein content. The hypothesis was that sulfur signals and other XRF spectral features can be used as proxies to infer soybean protein content. Sample preparation and equipment settings to optimize detection of S and other specific emission lines were tested for this application. A logistic regression model for classifying soybean as high- or low-protein was developed based on XRF spectra and protein contents. Additionally, the model was validated with an independent set of samples. Global accuracies of the method were 0.83 (training set) and 0.81 (test set) and the corresponding kappa indices were 0.66 and 0.61, respectively. These numbers indicated satisfactory performance of the sensor, suggesting that XRF spectral features can be applied for screening protein content in soybean.


Asunto(s)
Glycine max , Espectrometría por Rayos X/métodos , Rayos X
4.
Plants (Basel) ; 12(14)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37514202

RESUMEN

The deficiency of calcium (Ca) reduces the quality and shelf life of fruits. In this scenario, although foliar spraying of Ca2+ has been used, altogether with soil fertilization, as an alternative to prevent deficiencies, little is known regarding its absorption dynamics by plant leaves. Herein, in vivo microprobe X-ray fluorescence was employed aiming to monitor the foliar absorption of CaCl2, Ca-citrate complex, and Ca3(PO4)2 nanoparticles with and without using adjuvant. We also investigated whether Sr2+ can be employed as Ca2+ proxy in foliar absorption studies. Moreover, the impact of treatments on the cuticle structure was evaluated by scanning electron microscopy. For this study, 45-day-old tomato (Solanum lycopersicum L., cv. Micro-Tom) plants were used as a model species. After 100 h, the leaves absorbed 90, 18, and 4% of aqueous CaCl2, Ca-citrate, and Ca3(PO4)2 nanoparticles, respectively. The addition of adjuvant increased the absorption of Ca-citrate to 28%, decreased that of CaCl2 to 77%, and did not affect Ca3(PO4)2. CaCl2 displayed an exponential decay absorption profile with half-lives of 15 h and 5 h without and with adjuvant, respectively. Ca-citrate and Ca3(PO4)2 exhibited absorption profiles that were closer to a linear behavior. Sr2+ was a suitable Ca2+ tracer because of its similar absorption profiles. Furthermore, the use of adjuvant affected the epicuticular crystal structure. Our findings reveal that CaCl2 was the most efficient Ca2+ source. The effects caused by adjuvant suggest that CaCl2 and Ca-citrate were absorbed mostly through hydrophilic and lipophilic pathways.

5.
Sci Total Environ ; 864: 161009, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549526

RESUMEN

Mining is an important component of the Brazilian economy. However, it may also contribute to environmental problems such as the pollution of soils with zinc and other potentially toxic metals. Our objective was to evaluate changes in the chemical speciation and mobility of Zn in a soil amended with phosphate. Soil samples were collected from a deactivated mining area in the state of Minas Gerais, Brazil, and amended with NH4H2PO4 saturated with deionized water to 70 % of maximum water retention and incubated at 25 ± 2 °C in open containers for 60 days. The soil was chemically and mineralogically characterized, and sequential extraction, desorption kinetics, and speciation were carried out using synchrotron bulk-sample and micro-X-ray Absorption Near-Edge Structure (XANES/µ-XANES) spectroscopy at the Zn K-edge, and X-ray fluorescence microprobe analysis (µ-XRF). The combination of µ-XRF and µ-XANES techniques made it possible to identify Zn hotspots in the main species formed after phosphate remediation. The best fit combination for bulk XANES and µ-XANES was observed in Zn-montmorillonite, Zn-kerolite, Zn-ferrihydrite, and gahnite. In the course of phosphate treatment, gahnite, Zn layered double hydroxides (Zn-LDH), Zn3(PO4), and ZnO were identified by bulk XANES, while Zn-ferrihydrite, Zn-montmorillonite, and scholzite were identified by µ-XANES. Zinc in the phosphate-amended soil had the strongest partial correlations (r' > 0.05) with Ni, Co, Fe, Cr, Mn, Si, P, Cd, Pb, and Cd, while the unamended soil showed the strongest correlation with Cu, Pb, Fe, and Si. The application of NH4H2PO4 altered Zn speciation and favored an increase in Zn desorption. The most available Zn contents after phosphate amendment were correlated with the release of exchangeable Zn fractions, associated with carbonate and organic matter.

6.
Metallomics ; 15(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37218709

RESUMEN

X-ray fluorescence spectroscopy (XRF) is a powerful technique for the in vivo assessment of plant tissues. However, the potential X-ray exposure damages might affect the structure and elemental composition of living plant tissues, leading to artefacts in the recorded data. Herein, we exposed in vivo soybean (Glycine max (L.) Merrill) leaves to several X-ray doses through a polychromatic benchtop microprobe X-ray fluorescence spectrometer, modulating the photon flux density by adjusting either the beam size, current, or exposure time. Changes in the irradiated plant tissues' structure, ultrastructure, and physiology were investigated through light and transmission electron microscopy (TEM). Depending on X-ray exposure dose, decreased K and X-ray scattering intensities and increased Ca, P, and Mn signals on soybean leaves were recorded. Anatomical analysis indicated the necrosis of epidermal and mesophyll cells on the irradiated spots, where TEM images revealed the collapse of cytoplasm and cell wall breaking. Furthermore, the histochemical analysis detected the production of reactive oxygen species and the inhibition of chlorophyll autofluorescence in these areas. Under certain X-ray exposure conditions, e.g. high photon flux density and long exposure time, XRF measurements may affect the soybean leaves structures, elemental composition, and cellular ultrastructure, inducing programmed cell death. Our characterization shed light on the plant's responses to the X-ray-induced radiation damage and might help to establish proper X-ray radiation limits and novel strategies for in vivo benchtop-XRF analysis of vegetal materials.


Asunto(s)
Clorofila , Hojas de la Planta , Rayos X , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Células del Mesófilo , Espectrometría por Rayos X
7.
Sci Total Environ ; 821: 153307, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065106

RESUMEN

Size is a key factor controlling the rate of dissolution of nanoparticles, such property can be explored for producing controlled release fertilizers. Hence, one can expect the increasing discharge of nanoparticles closer to water streams in the near future. In this study, we employed the model fresh water organism Daphnia magna to investigate the uptake, acute toxicity and depuration of ZnO nanoparticles. The present study shows that the median lethal concentration (LC50) depended on particle size and the presence of surfactant. The LC50 for positive control ZnSO4 (2.15 mg L-1), 20 nm ZnO (1.68 mg L-1), and 40 nm ZnO (1.71 mg L-1) were statistically the same. However, the addition of surfactant increased the LC50 of 40 nm and 60 nm to 2.93 and 3.24 mg L-1, respectively. The 300 nm ZnO was the least toxic nanoparticle presenting LC50 of 6.35 mg L-1. X-ray fluorescence chemical imaging revealed that Zn accumulated along the digestive system regardless the particle size. Finally, contrary to what have been reported by several papers, the present study did not detect any depuration of ZnO nanoparticles in the next 24 h past the exposure assays. Thus, the ability of organisms to expel ingested nanomaterials might be dependent on specific physical-chemical features of such nanomaterials.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Contaminantes Químicos del Agua , Óxido de Zinc , Animales , Daphnia , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Nanopartículas/toxicidad , Tamaño de la Partícula , Contaminantes Químicos del Agua/análisis , Óxido de Zinc/química , Óxido de Zinc/toxicidad
8.
Data Brief ; 41: 108004, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35274030

RESUMEN

Proximal soil sensing technologies, such as visible and near infrared diffuse reflectance spectroscopy (VNIR), X-ray fluorescence spectroscopy (XRF), and laser-induced breakdown spectroscopy (LIBS), are dry-chemistry techniques that enable rapid and environmentally friendly soil fertility analyses. The application of XRF and LIBS sensors in an individual or combined manner for soil fertility prediction is quite recent, especially in tropical soils. The shared dataset presents spectral data of VNIR, XRF, and LIBS sensors, even as the characterization of key soil fertility attributes (clay, organic matter, cation exchange capacity, pH, base saturation, and exchangeable P, K, Ca, and Mg) of 102 soil samples. The samples were obtained from two Brazilian agricultural areas and have a wide variation of chemical and textural attributes. This is a pioneer dataset of tropical soils, with potential to be reused for comparative studies with other datasets, e.g., comparing the performance of sensors, instrumental conditions, and/or predictive models on different soil types, soil origin, concentration range, and agricultural practices. Moreover, it can also be applied to compose soil spectral libraries that use spectral data collected under similar instrumental conditions.

9.
Environ Sci Pollut Res Int ; 29(60): 90779-90790, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35876991

RESUMEN

Phytoextraction of rare earth elements (REE) from contaminated soils has gained importance during the last few decades. The Poços de Caldas municipality in Brazil is known for its mineral richness, including large reserves of REE. In this study, we report light REE (La, Ce, Sm, Pr, and Nd) in soils and plants collected in an area. Composite soil samples and plant individuals were collected, and total concentrations of LREE in soils were determined by wavelength dispersive X-ray fluorescence (WDXRF). The plant available LREE concentrations in soils were estimated upon the acetic acid method (F1 fractions) of the stepwise sequential extraction procedure, together with plant content that was analysed by inductively coupled plasma mass spectrometry (ICP-MS). The total sum concentrations of tested LREE in soils varied from 5.6 up to 37.9 g kg-1, the bioavailable fraction was ca. 1%, and a linear relationship was found between them. The only exception was Sm, whose availability was lesser and did not show a linear relationship. The concentration of LREE in non-accumulator plants varied from 1.3-950 mg kg-1 for Ce, La 1.1-99 mg kg-1, Sm 0.04-9.31 mg kg-1, Pr 0.1-24.1 mg kg-1, and Nd 0.55-81 mg kg-1. The concentration of LREE among shoots did not show a linear relation either with the available fraction or total content. The screening also revealed Christella dentata (Forssk.) Brownsey & Jermy, Thelypteridaceae family, as a promising hyperaccumulator species. The concentrations of LREE among shoots of six individuals of this species were in the ranges from 115 to 1872 mg kg-1 for Ce, La 190-703 mg kg-1, Sm 9-48 mg kg-1, Pr 32-144 mg kg-1, and Nd 105-478 mg kg-1.


Asunto(s)
Humanos , Brasil
10.
Talanta ; 225: 122025, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592755

RESUMEN

This study is focused on the development of analytical methods for characterization of printed circuit boards (PCBs) from mobile phones by direct analysis using three complementary spectroanalytical techniques: laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), laser-induced breakdown spectroscopy (LIBS), and micro X-ray fluorescence spectroscopy (micro-XRF). These techniques were combined with principal component analysis (PCA) to investigate the chemical composition on the surface and depth profiling of PCB samples. The spatial distribution of important base metals (e.g. Al, Au, Ba, Cu, Fe, Mg, Ni, Zn), toxic elements (e.g. Cd, Cr, Pb) as well as the non-metallic fraction (e.g. P, S and Si) from conductive tracks, solder mask and integrated components were detected within the PCB samples. Univariate and multivariate approaches were also performed to obtain calibration models for Cu determination. The results were compared to reference concentrations obtained by inductively coupled plasma-optical emission spectrometry (ICP-OES) after microwave-assisted acid leaching using aqua regia. To this end, two PCB samples (50 × 34 mm2) were cut into small parts of 40 subsamples (10 × 8.5 mm2) and analyzed by ICP-OES and the Cu concentrations ranged from 13 to 45% m m-1. Partial least squares (PLS) regression was used to data fusion of analytical information from LIBS and micro-XRF analysis. The proposed calibration methods for LIBS and micro-XRF were tested for the 40 PCB subsamples, in which the best results were obtained combining both data sources though a low-level data fusion. Root mean square error of cross validation (RMSEC) and recoveries were 3.23% m m-1 and 81-119% using leave-one-out cross validation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA