Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Rep Prog Phys ; 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541096

RESUMEN

With the advent of a new generation of neutrino experiments which leverage high-intensity neutrino beams for precision neutrino oscillation parameter and for CP violation phase measurements, it is timely to explore physics topics beyond the standard neutrino-related physics. Given that beyond the standard model (BSM) physics phenomena have been mostly sought at high-energy regimes, such as the LHC at CERN, the exploration of BSM physics in neutrino experiments will enable complementary measurements at the energy regimes that balance that of the LHC. This is in concert with new ideas for high-intensity beams for fixed target and beam-dump experiments world-wide. The combination of the high intensity beam facilities and large mass detectors with highly precise track and energy measurements, excellent timing resolution, and low energy thresholds will help make BSM physics reachable even in low energy regimes in accelerator-based experiments and searches for BSM phenomena from cosmogenic origin. Therefore, it is conceivable that BSM topics could be the dominant physics topics in the foreseeable future. In this spirit, this paper provides a review of the current theory landscape theory in neutrino experiments in two selected areas of the BSM topics - dark matter and neutrino related BSM - and summarizes the current results from existing neutrino experiments for benchmark. This paper then provides a review of upcoming neutrino experiments and their capabilities to set the foundation for potential reach in BSM physics in the two themes. One of the most important outcomes of this paper is to ensure theoretical and simulation tools exist to perform studies of these new areas of physics from the first day of the experiments, such as DUNE and Hyper-K. Tasks to accomplish this goal, and the time line for them to be completed and tested to become reliable tools in a timely fashion are also discussed.

2.
Phys Rev Lett ; 124(8): 081802, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167361

RESUMEN

keV-scale gauge-singlet fermions, when allowed to mix with the active neutrinos, are elegant dark matter (DM) candidates. They are produced in the early Universe via the Dodelson-Widrow mechanism and can be detected as they decay very slowly, emitting x-rays. In the absence of new physics, this hypothesis is virtually ruled out by astrophysical observations. Here, we show that new interactions among the active neutrinos allow these sterile neutrinos to make up all the DM while safely evading all current experimental bounds. The existence of these new neutrino interactions may manifest itself in next-generation experiments, including DUNE.

3.
Phys Rev Lett ; 125(5): 051803, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32794872

RESUMEN

The planned DUNE experiment will have excellent sensitivity to the vector and axial couplings of the electron to the Z boson via precision measurements of neutrino-electron scattering. We investigate the sensitivity of DUNE-PRISM, a movable near detector in the direction perpendicular to the beam line, and find that it will qualitatively impact our ability to constrain the weak couplings of the electron. We translate these neutrino-electron scattering measurements into a determination of the weak mixing angle at low scales and estimate that, with seven years of data taking, the DUNE near detector can be used to measure sin^{2}θ_{W} with about 2% precision. We also discuss the impact of combining neutrino-electron scattering data with neutrino trident production at DUNE-PRISM.

4.
Rep Prog Phys ; 79(12): 124201, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27775925

RESUMEN

This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

5.
Nat Rev Phys ; 4(9): 565-567, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35856011

RESUMEN

Past and present chairs of the Division of Particles and Fields of the American Physical Society explain how the high-energy physics community in the US decides the priorities for research through regular planning exercises that started 40 years ago at Snowmass, Colorado.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA