Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 32(32)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-33930886

RESUMEN

Surface-exposed uniformly doped silicon-on-insulator channels are fabricated to evaluate the accuracy of Kelvin Probe Force Microscopy (KPFM) measured surface potential and reveals the role of surface charge on the exposed channel operated in the ambient environment. First, the quality of the potential profile probed in the vacuum environment is assessed by the consistency of converted resistivity from KPFM result to the resistivity extracted by the other three methods. Second, in contrast to the simulated and vacuum surface potential profile and image, the ambient surface potential is bent excessively at the terminals of the channel. The excessive bending can be explained by the movement of surface charge under the drive of geometry induced strong local electric field from the channel and results in non-uniform distribution. The dynamic movement of surface charges is proved by the observation of time-dependent potential drift in the ambient measurement. The result suggests the surface charge effect should be taken into account of the measurement of the surface potential in the ambient environment and the design of charge sensitive devices whose surfaces are exposed to air or in ambient conditions in their operation.

2.
Faraday Discuss ; 213(0): 339-355, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30411749

RESUMEN

We have recently reported a new method for the electrodeposition of thin film and nanostructured phase change memory (PCM) devices from a single, highly tuneable, non-aqueous electrolyte. The quality of the material was confirmed by phase cycling via electrical pulsed switching of both 100 nm nano-cells and thin film devices. This method potentially allows deposition into extremely small confined cells down to less than 5 nm, 3D lay-outs that require non-line-of-sight techniques, and seamless integration of selector devices. As electrodeposition requires a conducting substrate, the key condition for electronic applications based on this method is the use of patterned metal lines as the working electrode during the electrodeposition process. In this paper, we show the design and fabrication of a 2D passive memory matrix in which the word lines act as the working electrode and nucleation site for the growth of confined cells of Ge-Sb-Te. We will discuss the precursor requirement for deposition from non-aqueous, weakly coordinating solvents, show the transmission electron microscopy analysis of the electrodeposition growth process and elemental distribution in the deposits, and show the fabrication and characterisation of the Ge-Sb-Te memory matrix.

3.
Sci Rep ; 14(1): 14008, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890324

RESUMEN

Integrating resistive memory or neuromorphic memristors into mainstream silicon technology can be substantially facilitated if the memories are built in the back-end-of-line (BEOL) and stacked directly above the logic circuitries. Here we report a promising memristor employing a plasma-enhanced chemical vapour deposition (PECVD) bilayer of amorphous SiC/Si as device layer and Cu as an active electrode. Its endurance exceeds one billion cycles with an ON/OFF ratio of ca. two orders of magnitude. Resistance drift is observed in the first 200 million cycles, after which the devices settle with a coefficient of variation of ca. 10% for both the low and high resistance states. Ohmic conduction in the low resistance state is attributed to the formation of Cu conductive filaments inside the bilayer structure, where the nanoscale grain boundaries in the Si layer provide the pre-defined pathway for Cu ion migration. Rupture of the conductive filament leads to current conduction dominated by reverse bias Schottky emission. Multistate switching is achieved by precisely controlling the pulse conditions for potential neuromorphic computing applications. The PECVD deposition method employed here has been frequently used to deposit typical BEOL SiOC low-k interlayer dielectrics. This makes it a unique memristor system with great potential for integration.

4.
Dalton Trans ; 50(3): 998-1006, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33355323

RESUMEN

This work has demonstrated that the single source precursor [nBu3Sn(TenBu)], bearing n-butyl groups and containing the necessary 1 : 1 Sn : Te ratio, facilitates growth of continuous, stoichiometric SnTe thin films. This single source CVD precursor allows film growth at significantly lower temperatures (355-434 °C at 0.01-0.05 Torr) than required for CVD from SnTe powder. This could be advantageous for controlling the surface states in topological insulators. The temperature-dependent thermoelectric performance of these films has been determined, revealing them to be p-type semiconductors with peak Seebeck coefficient and power factor values of 78 µV K-1 and 8.3 µW K-2 cm-1, respectively, at 615 K; comparing favourably with data from bulk SnTe. Further, we have demonstrated that the precursor facilitates area selective growth of SnTe onto the TiN regions of SiO2/TiN patterned substrates, which is expected to be beneficial for the fabrication of micro-thermoelectric generators.

5.
ACS Appl Mater Interfaces ; 13(40): 47773-47783, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34606236

RESUMEN

The homologous series [GenBu3(EnBu)] (E = Te, Se, S; (1), (3) and (4)) and [GenBu2(TenBu)2] (2) have been synthesized as mobile oils in excellent yield (72-93%) and evaluated as single-source precursors for the low-pressure chemical vapor deposition (LPCVD) of GeE thin films on silica. Compositional and structural characterizations of the deposits have been performed by grazing-incidence X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, and Raman spectroscopy, confirming the phase purity and stoichiometry. Electrical characterization via variable-temperature Hall effect measurements is also reported. Given the strong interest in GeTe and its alloys for thermoelectric applications, variable-temperature Seebeck data were also investigated for a series of p-type GeTe films. The data show that it is possible to tune the thermoelectric response through intrinsic Ge vacancy regulation by varying the deposition temperature, with the highest power factor (40 µW/K2cm@629 K) and effective ZT values observed for the films deposited at higher temperatures.

6.
Chem Commun (Camb) ; 57(79): 10194-10197, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34519740

RESUMEN

We report a simple process for the electrodeposition of tungsten disulfide thin films from a CH2Cl2-based electrolyte using a tailored single source precursor, [NEt4]2[WS2Cl4]. This new precursor incorporates the 1 : 2 W : S ratio required for formation of WS2, and eliminates the need for an additional proton source in the electrolyte to remove excess sulfide. The electrochemical behaviour of [NEt4]2[WS2Cl4] is studied by cyclic voltammetry and electrochemical quartz crystal microbalance techniques, and the WS2 thin films are grown by potentiostatic electrodeposition.

7.
Adv Mater ; 32(25): e2001534, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32419202

RESUMEN

New methods for achieving high-quality conducting oxide metasurfaces are of great importance for a range of emerging applications from infrared thermal control coatings to epsilon-near-zero nonlinear optics. This work demonstrates the viability of plasma patterning as a technique to selectively and locally modulate the carrier density in planar Al-doped ZnO (AZO) metasurfaces without any associated topographical surface profile. This technique stands in strong contrast to conventional physical patterning which results in nonplanar textured surfaces. The approach can open up a new route to form novel photonic devices with planar metasurfaces, for example, antireflective coatings and multi-layer devices. To demonstrate the performance of the carrier-modulated AZO metasurfaces, two types of devices are realized using the demonstrated plasma patterning. A metasurface optical solar reflector is shown to produce infrared emissivity equivalent to a conventional etched design. Second, a multiband metasurface is achieved by integrating a Au visible-range metasurface on top of the planar AZO infrared metasurface. Independent control of spectral bands without significant cross-talk between infrared and visible functionalities is achieved. Local carrier tuning of conducting oxide films offers a conceptually new approach for oxide-based photonics and nanoelectronics and opens up new routes for integrated planar metasurfaces in optical technology.

8.
ACS Omega ; 5(24): 14679-14688, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32596605

RESUMEN

We report the thermoelectric properties of Bi2Te3 thin films electrodeposited from the weakly coordinating solvent dichloromethane (CH2Cl2). It was found that the oxidation of porous films is significant, causing the degradation of its thermoelectric properties. We show that the morphology of the film can be improved drastically by applying a short initial nucleation pulse, which generates a large number of nuclei, and then growing the nuclei by pulsed electrodeposition at a much lower overpotential. This significantly reduces the oxidation of the films as smooth films have a smaller surface-to-volume ratio and are less prone to oxidation. X-ray photoelectron spectroscopy (XPS) shows that those films with Te(O) termination show a complete absence of oxygen below the surface layer. A thin film transfer process was developed using polystyrene as a carrier polymer to transfer the films from the conductive TiN to an insulating layer for thermoelectrical characterization. Temperature-dependent Seebeck measurements revealed a room-temperature coefficient of -51.7 µV/K growing to nearly -100 µV/K at 520 °C. The corresponding power factor reaches a value of 88.2 µW/mK2 at that temperature.

9.
Dalton Trans ; 48(1): 117-124, 2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30468211

RESUMEN

Reaction of activated germanium with nBu2Te2 in THF solution was shown to be more effective for the preparation of the germanium(iv) tellurolate compound, [Ge(TenBu)4], than reaction of GeCl4 with LiTenBu in a 1 : 4 molar ratio in THF. The product was characterised by 1H, 13C{1H} NMR spectroscopy and microanalysis and evaluated as a single source precursor for the low pressure chemical vapour deposition of GeTe thin films. Depending upon deposition conditions, either dull grey films (predominantly elemental Te) or highly reflective (GeTe) films were obtained from the pure precursor. Grazing incidence X-ray diffraction shows that the highly reflective films are comprised of the rhombohedral α-GeTe phase, while scanning electron microscopy and energy dispersive X-ray analysis reveal rhomb-shaped crystallites with a 49(1) : 51(1)% Ge : Te ratio. This structure is also confirmed from Raman spectra. Van der Pauw measurements show ρ = 3.2(1) × 10-4 Ω cm and Hall electrical measurements indicate that the GeTe thin films are p-type, with a mobility of 8.4(7) cm2 V-1 s-1 and carrier concentration of 2.5(2) × 1021 cm-3. The high p-type concentration is most likely a result of the substantial Ge vacancies in its sub-lattice, in line with the EDX elemental ratios.

10.
Nanoscale Res Lett ; 12(1): 541, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28929410

RESUMEN

A novel supercycled atomic layer deposition (ALD) process which combines thermal ALD process with in situ O2 plasma treatment is presented in this work to deposit ZnO thin films with highly tunable electrical properties. Both O2 plasma time and the number of thermal ALD cycles in a supercycle can be adjusted to achieve fine tuning of film resistivity and carrier concentration up to six orders of magnitude without extrinsic doping. The concentration of hydrogen defects are believed to play a major role in adjusting the electrical properties of ZnO films. Kelvin probe force microscopy results evidently show the shift of Fermi level in different ZnO films and are well associated with the changing of carrier concentration. This reliable and robust technique reported here clearly points towards the capability of using this method to produce ZnO films with controlled properties in different applications.

11.
Nanoscale Res Lett ; 12(1): 384, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28582965

RESUMEN

A controllable transformation from interfacial to filamentary switching mode is presented on a ZrO2/ZrO2 - x /ZrO2 tri-layer resistive memory. The two switching modes are investigated with possible switching and transformation mechanisms proposed. Resistivity modulation of the ZrO2 - x layer is proposed to be responsible for the switching in the interfacial switching mode through injecting/retracting of oxygen ions. The switching is compliance-free due to the intrinsic series resistor by the filaments formed in the ZrO2 layers. By tuning the RESET voltages, controllable and stable multistate memory can be achieved which clearly points towards the capability of developing the next-generation multistate high-performance memory.

12.
Sci Rep ; 6: 27593, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27283116

RESUMEN

Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the <1 1 0> orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition.

13.
Nanoscale Res Lett ; 10(1): 432, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26525703

RESUMEN

We report the properties of a series of electrodeposited Ge-Sb-Te alloys with various compositions. It is shown that the Sb/Ge ratio can be varied in a controlled way by changing the electrodeposition potential. This method opens up the prospect of depositing Ge-Sb-Te super-lattice structures by electrodeposition. Material and electrical characteristics of various compositions have been investigated in detail, showing up to three orders of magnitude resistance ratio between the amorphous and crystalline states and endurance up to 1000 cycles.

14.
Chem Mater ; 25(23): 4719-4724, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24489437

RESUMEN

The neutral, distorted octahedral complex [TiCl4(Se n Bu2)2] (1), prepared from the reaction of TiCl4 with the neutral Se n Bu2 in a 1:2 ratio and characterized by IR and multinuclear (1H, 13C{1H}, 77Se{1H}) NMR spectroscopy and microanalysis, serves as an efficient single-source precursor for low-pressure chemical vapor deposition (LPCVD) of titanium diselenide, TiSe2, films onto SiO2 and TiN substrates. X-ray diffraction patterns on the deposited films are consistent with single-phase, hexagonal 1T-TiSe2 (P3̅m1), with evidence of some preferred orientation of the crystallites in thicker films. The composition and structural morphology was confirmed by scanning electron microscopy (SEM), energy dispersive X-ray, and Raman spectroscopy. SEM imaging shows hexagonal plate crystallites growing perpendicular to the substrate, but these tend to align parallel to the surface when the quantity of reagent is reduced. The resistivity of the crystalline TiSe2 films is 3.36 ± 0.05 × 10-3 Ω·cm with a carrier density of 1 × 1022 cm-3. Very highly selective film growth from the reagent was observed onto photolithographically patterned substrates, with film growth strongly preferred onto the conducting TiN surfaces of SiO2/TiN patterned substrates. TiSe2 is selectively deposited within the smallest 2 µm diameter TiN holes of the patterned TiN/SiO2 substrates. The variation in crystallite size with different diameter holes is determined by microfocus X-ray diffraction and SEM, revealing that the dimensions increase with the hole size, but that the thickness of the crystals stops increasing above ∼20 µm hole size, whereas their lengths/widths continue to increase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA