Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Prostate ; 82(6): 695-705, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35167141

RESUMEN

BACKGROUND: Prostate cancer (PCa) models in mice and rats are limited by their size and lack of a clearly delineated or easily accessible prostate gland. The canine PCa model is currently the only large animal model which can be used to test new preclinical interventions but is costly and availability is sparse. As an alternative, we developed an orthotopic human prostate tumor model in an immunosuppressed New Zealand White rabbit. Rabbits are phylogenetically closer to humans, their prostate gland is anatomically similar, and its size allows for clinically-relevant testing of interventions. METHODS: Rabbits were immunosuppressed via injection of cyclosporine. Human PC3pipGFP PCa cells were injected into the prostate via either (a) laparotomy or (b) transabdominal ultrasound (US) guided injection. Tumor growth was monitored using US and magnetic resonance imaging (MRI). Contrast-enhanced ultrasound (CEUS) imaging using nanobubbles and Lumason microbubbles was also performed to examine imaging features and determine the optimal contrast dose required for enhanced visualization of the tumor. Ex vivo fluorescence imaging, histopathology, and immunohistochemistry analyses of the collected tissues were performed to validate tumor morphology and prostate-specific membrane antigen (PSMA) expression. RESULTS: Immunosuppression and tumor growth were, in general, well-tolerated by the rabbits. Fourteen out of 20 rabbits, with an average age of 8 months, successfully grew detectable tumors from Day 14 onwards after cell injection. The tumor growth rate was 39 ± 25 mm2 per week. CEUS and MRI of tumors appear hypoechoic and T2 hypointense, respectively, relative to normal prostate tissue. Minimally invasive US-guided tumor cell injection proved to be a better method compared to laparotomy due to the shorter recovery time required for the rabbits following injection. Among the rabbits that grew tumors, seven had tumors both inside and outside the prostate, three had tumors only inside the prostate, and four had tumors exclusively outside of the prostate. All tumors expressed the PSMA receptor. CONCLUSIONS: We have established, for the first time, an orthotopic PCa rabbit model via percutaneous US-guided tumor cell inoculation. This animal model is an attractive, clinically relevant intermediate step to assess preclinical diagnostic and therapeutic compounds.


Asunto(s)
Neoplasias de la Próstata , Animales , Castración , Modelos Animales de Enfermedad , Perros , Humanos , Masculino , Ratones , Microburbujas , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Conejos , Ratas , Ultrasonografía/métodos
2.
Small ; 17(20): e2100345, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33811441

RESUMEN

Nanotechnology currently enables the fabrication of uniform solid nanoparticles and liquid nano-emulsions, but not uniform gaseous nanobubbles (NBs). In this article, for the first time, a method based on microfluidics that directly produces monodisperse NBs is reported. Specifically, a two-component gas mixture of water-soluble nitrogen and water-insoluble octafluoropropane as the gas phase are used in a microfluidic bubble generator. First, monodisperse microbubbles (MBs) with a classical microfluidic flow-focusing junction is generated, then the MBs shrink down to ≈100 nm diameter, due to the dissolution of the water-soluble components in the gas mixture. The degree of shrinkage is controlled by tuning the ratio of water-soluble to water-insoluble gas components. This technique maintains the monodispersity of the NBs, and enables precise control of the final NB size. It is found that the monodisperse NBs show better homogeneity than polydisperse NBs in in vitro ultrasound imaging experiments. Proof-of-concept in vivo kidney imaging is performed in live mice, demonstrating enhanced contrast using the monodisperse NBs. The NB monodispersity and imaging results make microfluidically generated NBs promising candidates as ultrasound contrast and molecular imaging agents.


Asunto(s)
Microburbujas , Microfluídica , Nanotecnología , Animales , Riñón/diagnóstico por imagen , Ratones , Imagen Molecular , Solubilidad , Ultrasonografía
3.
Nanomedicine ; 28: 102213, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32348874

RESUMEN

Contrast-enhanced ultrasound with microbubbles has shown promise in detection of prostate cancer (PCa), but sensitivity and specificity remain challenging. Targeted nanoscale-contrast agents with improved capability to accumulate in tumors may result in prolonged signal enhancement and improved detection of PCa with ultrasound. Here we report nanobubbles (NB) that specifically targets prostate specific membrane antigen (PSMA) overexpressed in PCa. The PSMA-targeted-NB (PSMA-NB) were utilized to simultaneously image dual-flank PCa (PSMA-positive PC3pip and PSMA-negative PC3flu) to examine whether the biomarker can be successfully detected and imaged in a mouse model. Results demonstrate that active targeting rapidly and selectively enhances tumor accumulation and tumor retention. Importantly, these processes could be visualized and quantified, in real-time, with clinical ultrasound. Such demonstration of the immense yet underutilized potential of ultrasound in the molecular imaging area can open the door to future opportunities for improving sensitivity and specificity of cancer detection using parametric NB-enhanced ultrasound imaging.


Asunto(s)
Antígenos de Neoplasias/análisis , Medios de Contraste/química , Imagen Molecular/métodos , Proteínas de Neoplasias/análisis , Neoplasias de la Próstata/diagnóstico por imagen , Ultrasonografía/métodos , Animales , Línea Celular Tumoral , Proteínas Ligadas a GPI/análisis , Masculino , Ratones , Ratones Desnudos , Microburbujas
4.
Langmuir ; 35(31): 10192-10202, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30913884

RESUMEN

Ultrasound (US) is a widely used diagnostic imaging tool because it is inexpensive, safe, portable, and broadly accessible. Ultrasound contrast agents (UCAs) are employed to enhance backscatter echo and improve imaging contrast. The most frequently utilized UCAs are echogenic bubbles made with a phospholipid or protein-stabilized hydrophobic gas core. While clinically utilized, applications of UCAs are often limited by rapid signal decay (<5 min) in vivo under typical ultrasound imaging protocols. Here, we report on a formulation of lipid shell-stabilized perfluoropropane (C3F8) microbubbles and nanobubbles with a significantly prolonged in vivo stability. Microbubbles (875 ± 280 nm) of the target size were prepared by utilizing a multiple-step centrifugation cycle, while nanobubbles (299 ± 189 nm) were isolated from the activated vial using a single centrifugation step. To provide in-depth acoustic characterization of the new construct we evaluated the effect of size and concentration on their in vitro and in vivo performance. In vitro and in vivo characterization were carried out for a range of bubble concentrations normalized by total gas volume quantified via headspace gas chromatography/mass spectrometry (GC/MS). In vitro characterization revealed that nanobubbles at different concentrations are more consistently stable over time with the highest and lowest dilutions (50-fold decrease) only differing in US signal after 8 min exposure by 10.34%, while for microbubbles the difference was 86.46%. As expected, due to the difference in hydrodynamic diameter and scattering cross section difference, nanobubbles showed lower overall initial signal intensity. In vivo experiments showed that both microbubbles and nanobubbles with similar initial peak signal intensity are comparably stable over time with 66.8% and 60.6% remaining signal after 30 min, respectively. This study demonstrates that bubble concentration has significant effects on the persistence of both microbubbles and nanobubbles in vitro and in vivo, but the effects are more pronounced in larger bubbles. These effects should be taken into account when selecting the appropriate bubble parameters for future imaging applications.


Asunto(s)
Medios de Contraste/química , Microburbujas , Nanoestructuras/química , Animales , Fluorocarburos/química , Riñón/diagnóstico por imagen , Ratones , Tamaño de la Partícula , Ácidos Fosfatidicos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Ultrasonografía/métodos
5.
Small ; 14(22): e1800115, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29700977

RESUMEN

Poly(ε-caprolactone) (PCL)-based nanomaterials, such as nanoparticles and liposomes, have exhibited great potential as controlled release systems, but the difficulties in large-scale fabrication limit their practical applications. Among the various methods being developed to fabricate polymer nanosheets (PNSs) for different applications, such as Langmuir-Blodgett technique and layer-by-layer assembly, are very effort consuming, and only a few PNSs can be obtained. In this paper, poly(ε-caprolactone)-based PNSs with adjustable thickness are obtained in large quantity by simple water exposure of multilayer polymer films, which are fabricated via a layer multiplying coextrusion method. The PNS is also demonstrated as a novel controlled guest release system, in which release kinetics are adjustable by the nanosheet thickness, pH values of the media, and the presence of protecting layers. Theoretical simulations, including Korsmeyer-Peppas model and Finite-element analysis, are also employed to discern the observed guest-release mechanisms.

6.
Biomacromolecules ; 16(3): 860-7, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25715836

RESUMEN

Polymeric fibers are of increasing interest to regenerative medicine, as materials made from these fibers are porous, allowing for cell infiltration, influx of nutrients, and efflux of waste products. Recently, multilayered coextrusion has emerged as a scalable and rapid fabrication method to yield microscale to submicron fibers. In this report, we describe the multilayered coextrusion of aligned poly(ε-caprolactone) (PCL) fibers, followed by a simple photochemical patterning to create surface-immobilized gradients onto the polymer fibers. PCL fibers were photochemically decorated with a linear gradient of propargyl benzophenone using a gradient photomask to control light source intensity. The pendant alkynes were then able to undergo the copper-catalyzed azide-alkyne cycloaddition reaction with an azide-modified IKVAV peptide to further functionalize the surface. Gradient-modified IKVAV fibers were evaluated for neural cell adhesion and neural differentiation, using PC-12 cells cultured onto the fibers. The aligned gradient fibers provided directional cues for neurite outgrowth and alignment of neural cells, as observed by cellular elongation, neurite differentiation, and orientation. The work presented herein describes a scalable fiber system combined with simple chemical patterning to generate aligned fibers with controlled surface gradients as cell-seeding scaffolds.


Asunto(s)
Poliésteres/química , Animales , Técnicas de Cultivo de Célula , Proliferación Celular , Medios de Cultivo/química , Ensayo de Materiales , Neurogénesis , Neuronas/fisiología , Células PC12 , Ratas , Propiedades de Superficie , Andamios del Tejido/química , Humectabilidad
7.
Langmuir ; 30(28): 8391-9, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24960617

RESUMEN

The tunable nature of weak polyelectrolyte multilayers makes them ideal candidates for drug loading and delivery, water filtration, and separations, yet the lateral transport of charged molecules in these systems remains largely unexplored at the single molecule level. We report the direct measurement of the charge-dependent, pH-tunable, multimodal interaction of single charged molecules with a weak polyelectrolyte multilayer thin film, a 10 bilayer film of poly(acrylic acid) and poly(allylamine hydrochloride) PAA/PAH. Using fluorescence microscopy and single-molecule tracking, two modes of interaction were detected: (1) adsorption, characterized by the molecule remaining immobilized in a subresolution region and (2) diffusion trajectories characteristic of hopping (D ∼ 10(-9) cm(2)/s). Radius of gyration evolution analysis and comparison with simulated trajectories confirmed the coexistence of the two transport modes in the same single molecule trajectories. A mechanistic explanation for the probe and condition mediated dynamics is proposed based on a combination of electrostatics and a reversible, pH-induced alteration of the nanoscopic structure of the film. Our results are in good agreement with ensemble studies conducted on similar films, confirm a previously-unobserved hopping mechanism for charged molecules in polyelectrolyte multilayers, and demonstrate that single molecule spectroscopy can offer mechanistic insight into the role of electrostatics and nanoscale tunability of transport in weak polyelectrolyte multilayers.


Asunto(s)
Iones/química , Nanotecnología/métodos , Polímeros/química , Resinas Acrílicas/química , Concentración de Iones de Hidrógeno , Microscopía Fluorescente
8.
J Biomed Opt ; 27(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35064656

RESUMEN

SIGNIFICANCE: An effective contrast agent for concurrent multimodal photoacoustic (PA) and ultrasound (US) imaging must have both high optical absorption and high echogenicity. Integrating a highly absorbing dye into the lipid shell of gas core nanobubbles (NBs) adds PA contrast to existing US contrast agents but may impact agent ultrasonic response. AIM: We report on the development and ultrasonic characterization of lipid-shell stabilized C3F8 NBs with integrated Sudan Black (SB) B dye in the shell as dual-modal PA-US contrast agents. APPROACH: Perfluoropropane NBs stabilized with a lipid shell including increasing concentrations of SB B dye were formulated by amalgamation (SBNBs). Physical properties of SBNBs were characterized using resonant mass measurement, transmission electron microscopy and pendant drop tensiometry. Concentrated bubble solutions were imaged for 8 min to assess signal decay. Diluted bubble solutions were stimulated by a focused transducer to determine the response of individual NBs to long cycle (30 cycle) US. For assessment of simultaneous multimodal contrast, bulk populations of SBNBs were imaged using a PA and US imaging platform. RESULTS: We produced high agent yield (∼1011) with a mean diameter of ∼200 to 300 nm depending on SB loading. A 40% decrease in bubble yield was measured for solutions with 0.3 and 0.4 mg / ml SB. The addition of SB to the shell did not substantially affect NB size despite an increase in surface tension by up to 8 mN / m. The bubble decay rate increased after prolonged exposure (8 min) by dyed bubbles in comparison to their undyed counterparts (2.5-fold). SB in bubble shells increased gas exchange across the shell for long cycle US. PA imaging of these agents showed an increase in power (up to 10 dB) with increasing dye. CONCLUSIONS: We added PA contrast function to NBs. The addition of SB increased gas exchange across the NB shell. This has important implications in their use as multimodal agents.


Asunto(s)
Colorantes , Medios de Contraste , Acústica , Lípidos , Microburbujas , Sudán , Ultrasonografía
9.
ACS Nano ; 15(3): 4901-4915, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33683878

RESUMEN

Understanding the pressure dependence of the nonlinear behavior of ultrasonically excited phospholipid-stabilized nanobubbles (NBs) is important for optimizing ultrasound exposure parameters for implementations of contrast enhanced ultrasound, critical to molecular imaging. The viscoelastic properties of the shell can be controlled by the introduction of membrane additives, such as propylene glycol as a membrane softener or glycerol as a membrane stiffener. We report on the production of high-yield NBs with narrow dispersity and different shell properties. Through precise control over size and shell structure, we show how these shell components interact with the phospholipid membrane, change their structure, affect their viscoelastic properties, and consequently change their acoustic response. A two-photon microscopy technique through a polarity-sensitive fluorescent dye, C-laurdan, was utilized to gain insights on the effect of membrane additives to the membrane structure. We report how the shell stiffness of NBs affects the pressure threshold (Pt) for the sudden amplification in the scattered acoustic signal from NBs. For narrow size NBs with 200 nm mean size, we find Pt to be between 123 and 245 kPa for the NBs with the most flexible membrane as assessed using C-Laurdan, 465-588 kPa for the NBs with intermediate stiffness, and 588-710 kPa for the NBs with stiff membranes. Numerical simulations of the NB dynamics are in good agreement with the experimental observations, confirming the dependence of acoustic response to shell properties, thereby substantiating further the development in engineering the shell of ultrasound contrast agents. The viscoelastic-dependent threshold behavior can be utilized for significantly and selectively enhancing the diagnostic and therapeutic ultrasound applications of potent narrow size NBs.


Asunto(s)
Medios de Contraste , Microburbujas , Acústica , Imagen Molecular , Ultrasonografía
10.
Sci Rep ; 11(1): 4726, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633232

RESUMEN

Ultrasound imaging is routinely used to guide prostate biopsies, yet delineation of tumors within the prostate gland is extremely challenging, even with microbubble (MB) contrast. A more effective ultrasound protocol is needed that can effectively localize malignancies for targeted biopsy or aid in patient selection and treatment planning for organ-sparing focal therapy. This study focused on evaluating the application of a novel nanobubble ultrasound contrast agent targeted to the prostate specific membrane antigen (PSMA-targeted NBs) in ultrasound imaging of prostate cancer (PCa) in vivo using a clinically relevant orthotopic tumor model in nude mice. Our results demonstrated that PSMA-targeted NBs had increased extravasation and retention in PSMA-expressing orthotopic mouse tumors. These processes are reflected in significantly different time intensity curve (TIC) and several kinetic parameters for targeted versus non-targeted NBs or LUMASON MBs. These, may in turn, lead to improved image-based detection and diagnosis of PCa in the future.


Asunto(s)
Antígenos de Superficie/análisis , Glutamato Carboxipeptidasa II/análisis , Neoplasias de la Próstata/diagnóstico por imagen , Animales , Medios de Contraste/análisis , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Microburbujas , Imagen Molecular , Ultrasonografía
11.
Front Pharmacol ; 11: 644, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477125

RESUMEN

Drug delivery to solid tumors using echogenic nanobubbles (NBs) and ultrasound (US) has recently gained significant interest. The approach combines attributes of nanomedicine and the enhanced permeation and retention (EPR) effect with the documented benefits of ultrasound to improve tumor drug distribution and treatment outcomes. However, optimized drug loading strategies, the drug-carrying capacity of NBs and their drug delivery efficiency have not been explored in depth and remain unclear. Here, we report for the first time on the development of a novel deprotonated hydrophobic doxorubicin-loaded C3F8 nanobubble (hDox-NB) for more effective US-mediated drug delivery. In this study, the size distribution and yield of hDox-NBs were measured via resonant mass measurement, while their drug-loading capacity was determined using a centrifugal filter technique. In vitro acoustic properties including contrast-imaging enhancement, initial echogenic signal, and decay were assessed and compared to doxorubicin hydrochloride loaded-NBs (Dox.HCl-NBs). In addition, in vitro therapeutic efficacy of hDox-NBs was evaluated by cytotoxicity assay in human ovarian cancer cells (OVCAR-3). The results showed that the hDox-NBs were small (300.7 ± 4.6 nm), and the drug loading content was significantly enhanced (2 fold higher) compared to Dox.HCl-NBs. Unexpectedly, the in vitro acoustic performance was also improved by inclusion of hDox into NBs. hDox-NB showed higher initial US signal and a reduced signal decay rate compared to Dox.HCl-NBs. Furthermore, hDox-NBs combined with higher intensity US exhibited an excellent therapeutic efficacy in human ovarian cancer cells as shown in a reduction in cell viability. These results suggest that hDox-NBs could be considered as a promising theranostic agent to achieve a more effective noninvasive US-mediated drug delivery for cancer treatment.

12.
ACS Appl Mater Interfaces ; 12(19): 22308-22317, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32307987

RESUMEN

Microbubbles (MBs) stabilized by particle surfactants (i.e., Pickering bubbles) have better thermodynamic stability compared to MBs stabilized by small molecules as a result of steric hindrance against coalescence, higher diffusion resistance, and higher particle desorption energy. In addition, the use of particles to stabilize MBs that are typically used as an ultrasound (US) contrast agent can also introduce photoacoustic (PA) properties, thus enabling a highly effective dual-modality US and PA contrast agent. Here, we report the use of partially reduced and functionalized graphene oxide as the sole surfactant to stabilize perfluorocarbon gas bubbles in the preparation of a dual-modality US and PA agent, with high contrast in both imaging modes and without the need for small-molecule or polymer additives. This approach offers an increase in loading of the PA agent without destabilization and increased thickness of the MB shell compared to traditional systems, in which the focus is on adding a PA agent to existing MB formulations.

13.
Ultrasound Med Biol ; 45(9): 2502-2514, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31248638

RESUMEN

Our group recently presented a simple strategy using the non-ionic surfactant, Pluronic, as a size control excipient to produce nanobubbles in the 100-nm range, which exhibited stability and echogenicity on par with clinically available microbubbles. The objective of the present study was to evaluate biodistribution and extravasation of the Pluronic-stabilized lipid nanobubbles compared with microbubbles in 2 experimental tumor models in mice. Standard lipid-stabilized perfluoropropane bubbles (Pluronic L10) and lipid-stabilized perfluoropropane nanobubbles were intravenously injected into mice bearing either an orthotopic mouse breast cancer (BC4 T1) or subcutaneous mouse ovarian cancer (OVCAR-3) through the tail vein to perform perfusion dynamic studies. No significant differences between the nanobubble and microbubble groups were observed in the peak enhancement of the 3 tested regions (tumor, liver and kidney). However, the decay rates of nanobubble in the tumor and kidney of BC4 T1-bearing mice, as well as in mice with OVRCAR-3 tumors were significantly slower than those of the microbubble. To quantify extravasation, fluorescently labeled bubbles were intravenously injected into mice bearing the same tumors. Histologic analysis showed that nanobubbles were retained in tumor tissue to a greater extent compared with microbubbles in both tumor models at the 3-h time point. Our results demonstrate unique nanobubble behavior compared with microbubbles and support augmented application of these agents in ultrasound molecular imaging and drug delivery beyond the tumor vasculature.


Asunto(s)
Medios de Contraste/química , Neoplasias Experimentales/diagnóstico por imagen , Poloxámero/química , Ultrasonografía/métodos , Animales , Medios de Contraste/farmacocinética , Femenino , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Ratones , Ratones Desnudos , Microburbujas , Neoplasias Ováricas/diagnóstico por imagen , Distribución Tisular
14.
Nanoscale ; 11(3): 851-855, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30601524

RESUMEN

Nano-sized shell-stabilized gas bubbles have applications in various fields ranging from environmental science to biomedical engineering. A resonant mass measurement (RMM) technique is demonstrated here as a new and only method capable of simultaneously measuring the size and concentration of buoyant and non-buoyant particles in a nanobubble sample used as a next-generation ultrasound contrast agent.

15.
Nanoscale ; 11(33): 15647-15658, 2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31408083

RESUMEN

Advancement of ultrasound molecular imaging applications requires not only a reduction in size of the ultrasound contrast agents (UCAs) but also a significant improvement in the in vivo stability of the shell-stabilized gas bubble. The transition from first generation to second generation UCAs was marked by an advancement in stability as air was replaced by a hydrophobic gas, such as perfluoropropane and sulfur hexafluoride. Further improvement can be realized by focusing on how well the UCAs shell can retain the encapsulated gas under extreme mechanical deformations. Here we report the next generation of UCAs for which we engineered the shell structure to impart much better stability under repeated prolonged oscillation due to ultrasound, and large changes in shear and turbulence as it circulates within the body. By adapting an architecture with two layers of contrasting elastic properties similar to bacterial cell envelopes, our ultrastable nanobubbles (NBs) withstand continuous in vitro exposure to ultrasound with minimal signal decay and have a significant delay on the onset of in vivo signal decay in kidney, liver, and tumor. Development of ultrastable NBs can potentially expand the role of ultrasound in molecular imaging, theranostics, and drug delivery.

16.
ACS Appl Mater Interfaces ; 10(12): 9949-9956, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29494124

RESUMEN

Shell-stabilized gas nanobubbles have recently captured the interest of the research community for their potential application as ultrasound contrast agents for molecular imaging and therapy of cancer. However, the very existence of submicron gas bubbles (especially uncoated bubbles) has been a subject of controversy in part due to their predicted Laplace overpressure reaching several atmospheres, making them supposedly thermodynamically unstable. In addition, the backscatter resulting from ultrasound interactions with nanoparticles is not predicted to be readily detectable at clinically relevant frequencies. Despite this, a number of recent reports have successfully investigated the presence and applications of nanobubbles for ultrasound imaging. The mechanism behind these observations remains unclear but is thought to be, in part, influenced heavily by the biophysical properties of the bubble-stabilizing shell. In this study, we investigated the effects of incorporating the triblock copolymer surfactant, Pluronic, into the lipid monolayer of nanobubbles. The impact of shell composition on membrane equilibrium surface tension was investigated using optical tensiometry, using both pendant drop and rising drop principles. However, these techniques proved to be insufficient in explaining the observed behavior and stability of nanobubbles under ultrasound. Additionally, we sought to investigate changes in membrane surface tension (surface pressure) at different degrees of compression (analogous to the bubble oscillations in the ultrasound field) via Langmuir-Blodgett experiments. Results from this study show a significant decrease ( p < 0.0001) in the nanobubble equilibrium surface tension through the incorporation of Pluronic L10, especially at a ratio of 0.2, where this value decreased by 28%. However, this reduction in surface pressure was seen only for specific compositions and varied with monolayer structure (crystalline phase or liquid-crystalline packing). These results indicate a potential for optimization wherein surface pressure can be maximized for both contraction and expansion phases with the proper lipid to Pluronic balance and microstructure.


Asunto(s)
Ultrasonografía , Medios de Contraste , Microburbujas , Nanopartículas , Poloxámero , Tensión Superficial
17.
RSC Adv ; 8(33): 18388-18395, 2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35541114

RESUMEN

Graphene oxide (GO) is a heterogenous 2D carbon-based material composed of sp2 and sp3 hybridized carbon atoms and oxygen containing functionalities, i.e., alcohols and epoxides. Thus, the chemical reactivity of GO is complex and both complimentary and contrasting to the reactivity of corresponding small molecules (e.g., tertiary alcohols, epoxides, and alkenes). Understanding the reactivity of GO under different conditions and with different reagents will ensure the chemical composition can be controlled and thus electronic and optical properties dictated, and solubility tuned for desired applications. Reaction of GO nanosheets towards a variety of reagents has been reported, however controlling the reaction pathway of GO nanosheets with a single nucleophile by simple alternation of the reaction medium has not been realized. This ability to tune the reaction by modification of solution pH, for example, would aid in understanding the reactivity of GO. Herein, we report that GO undergoes two distinct reaction pathways with ethane thiol depending on the pH of the reaction media: under aprotic basic conditions GO nanosheets undergo functionalization with minimal reduction, and under superacidic conditions GO nanosheets are reduced with no functionalization.

18.
Adv Cancer Res ; 139: 57-84, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29941107

RESUMEN

Ultrasound is the second most utilized imaging modality in the world because it is widely accessible, robust, and safe. Aside from its extensive use in diagnostic imaging, ultrasound has also been frequently utilized in therapeutic applications. Particularly, when combined with appropriate delivery systems, ultrasound provides a flexible platform for simultaneous real-time imaging and triggered release, enabling precise, on-demand drug delivery to target sites. This chapter will discuss the basics of ultrasound including its mechanism of action and how it can be used to trigger the release of encapsulated drug either through thermal or cavitation effects. Fundamentals of ultrasound contrast agents, how they enhance ultrasound signals, and how they can be modified to function as carriers for triggered and targeted release of drugs will also be discussed.


Asunto(s)
Antineoplásicos/administración & dosificación , Medios de Contraste/administración & dosificación , Sistemas de Liberación de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Ultrasonido/métodos , Animales , Antineoplásicos/química , Medios de Contraste/química , Humanos , Microburbujas , Neoplasias/diagnóstico por imagen
19.
ACS Macro Lett ; 6(11): 1201-1206, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-35650795

RESUMEN

Emulsions are important in numerous fields, including cosmetics, coatings, and biomedical applications. A subset of these structures, oil-in-oil emulsions, are especially intriguing for water sensitive reactions such as polymerizations and catalysis. Widespread use and application of oil-in-oil emulsions is currently limited by the lack of facile and simple methods for preparing suitable surfactants. Herein, we report the ready preparation of oil-in-oil emulsions using 2D nanomaterials as surfactants at the interface of polar and nonpolar organic solvents. Both the edges and basal plane of graphene oxide nanosheets were functionalized with primary alkyl amines and we demonstrated that the length of the alkyl chain dictates the continuous phase of the oil-in-oil emulsions (i.e., nonpolar-in-polar or polar-in-nonpolar). The prepared emulsions are stable at least 5 weeks and we demonstrate they can be used to compartmentalize reagents such that reaction occurs only upon physical agitation. The simplicity and scalability of these oil-in-oil emulsions render them ideal for applications impossible with traditional oil-in-water emulsions, and provide a new interfacial area to explore and exploit.

20.
ACS Appl Mater Interfaces ; 9(4): 4015-4023, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28026926

RESUMEN

Blending thermoplastic polyurethane (TPU) with poly(lactic acid) (PLA) is a proven method to achieve a much more mechanically robust material, whereas the addition of graphene oxide (GO) is increasingly applied in polymer nanocomposites to tailor further their properties. On the other hand, additive manufacturing has high flexibility of structure design which can significantly expand the application of materials in many fields. This study demonstrates the fused deposition modeling (FDM) 3D printing of TPU/PLA/GO nanocomposites and its potential application as biocompatible materials. Nanocomposites are prepared by solvent-based mixing process and extruded into filaments for FDM printing. The addition of GO largely enhanced the mechanical property and thermal stability of the nanocomposites. Interestingly, we found that the mechanical response is highly dependent on printing orientation. Furthermore, the 3D printed nanocomposites exhibit good biocompatibility with NIH3T3 cells, indicating promise as biomaterials scaffold for tissue engineering applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA