Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Biochem ; 124(4): 520-532, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36791261

RESUMEN

Gluten intolerance is associated with several disorders in the body. Although research has grown in recent years, the understanding of its impact on different tissues and the effects of physical exercise in mitigating health problems in the condition of gluten intolerance are still limited. Therefore, our objective was to test whether gliadin would affect metabolism and inflammation in liver tissue and whether aerobic physical exercise would mitigate the negative impacts of gliadin administration in rodents. Wistar rats were divided into exercised gliadin, gliadin, and control groups. Gliadin was administered by gavage from birth to 60 days of age. The rats in the exercised gliadin group performed an aerobic running exercise training protocol for 15 days. At the end of the experiments, physiological, histological, and molecular analyzes were performed in the study. Compared to the control group, the gliadin group had impaired weight gain and increased gluconeogenesis, lipogenesis, and inflammatory biomarkers in the liver. On the other hand, compared to the gliadin group, animals in the exercise-gliadin group had a recovery in body weight, improved insulin sensitivity, and a reduction in some gluconeogenesis, lipogenesis, and inflammatory biomarkers in the liver. In conclusion, our results revealed that the administration of gliadin from birth impaired weight gain and induced an increase in hepatic inflammatory cytokines, which was associated with an impairment of glycemic homeostasis in the liver, all of which were attenuated by adding aerobic exercise training in the gliadin group.


Asunto(s)
Enfermedad Celíaca , Gliadina , Ratas , Animales , Ratas Wistar , Enfermedad Celíaca/metabolismo , Aumento de Peso , Inflamación/inducido químicamente , Inflamación/terapia , Biomarcadores
2.
Can J Physiol Pharmacol ; 101(12): 661-671, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37746936

RESUMEN

Renovascular hypertension (RHV) is the cause of high blood pressure due to left renal ischemia, and obesity and hypertension cause an inflammatory response. This work analyzed the inflammatory and tissue repair profile in renal, hepatic, and cardiac tissues in an animal model of RVH associated with a high-fat diet and caloric restriction. The expressions of RORγ-t, IL-17, T-bet, and TNF-α decreased and IFN-γ increased in the right kidney. In relation to the left kidney, caloric restriction decreased the expression of IFN-γ. In the liver, caloric restriction decreased RORγ-t, IL-17, and T-bet. Hypertension associated with obesity decreased the expression of IFN-γ, while caloric restriction increased. In the right kidney, hypertension and obesity, associated or not with caloric restriction, increased the area of collagen fibers. In the heart and liver, caloric restriction reduced the area of collagen fibers. Caloric restriction increased vascular endothelial growth factor, reduced levels of growth transformation factor-ß1 (TGF-ß), and increased collagen I in the left kidney. Hypertension/obesity, submitted or not having caloric restriction, increased TGF-ß in liver. The results suggest that caloric restriction has beneficial effects in lowering blood pressure and regulating tissue proinflammatory cytokines. However, there was no change in the structure and composition of tissue repair markers.


Asunto(s)
Hipertensión Renovascular , Ratas , Animales , Hipertensión Renovascular/metabolismo , Ratas Wistar , Interleucina-17 , Restricción Calórica , Factor A de Crecimiento Endotelial Vascular , Obesidad/complicaciones , Factor de Crecimiento Transformador beta , Inflamación , Colágeno/metabolismo
3.
Clin Exp Pharmacol Physiol ; 49(10): 1072-1081, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35690890

RESUMEN

Obesity is associated with low-grade inflammation and disturbances in hepatic metabolism. This study aimed to investigate the effects of resistance exercise on inflammatory signalling related to IκB kinase (IKK) ɛ protein (IKKɛ) and on hepatic fat accumulation in obese mice. Male Swiss mice were distributed into three groups: control (CTL) fed with standard chow; obese (OB) mice induced by a high-fat diet (HFD); obese exercised (OB + RE) mice fed with HFD and submitted to a resistance exercise training. The resistance exercise training protocol consisted of 20 sets/3 ladder climbs for 8 weeks, three times/week on alternate days. The training overload was equivalent to 70% of the maximum load supported by the rodent. Assays were performed to evaluate weight gain, hepatic fat content, fasting glucose, insulin sensitivity, IKKɛ phosphorylation and proteins related to insulin signalling and lipogenesis in the liver. Mice that received the high-fat diet showed greater adiposity, impaired insulin sensitivity, increased fasting glucose and increased hepatic fat accumulation. These results were accompanied by an increase in IKKɛ phosphorylation and lipogenesis-related proteins such as cluster of differentiation 36 (CD36) and fatty acid synthase (FAS) in the liver of obese mice. In contrast, exercised mice showed lower body weight and adiposity evolution throughout the experiment. In addition, resistance exercise suppressed the effects of the high-fat diet by reducing IKKɛ phosphorylation and hepatic fat content. In conclusion, resistance exercise training improves hepatic fat metabolism and glycaemic homeostasis, which are, at least in part, linked to the anti-inflammatory effect of reduced IKKɛ phosphorylation in the liver of obese mice.


Asunto(s)
Adiposidad , Quinasa I-kappa B , Hígado , Obesidad , Entrenamiento de Fuerza , Animales , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA