Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Oecologia ; 193(3): 677-687, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32648114

RESUMEN

Ecological theory suggests that a combination of local and regional factors regulate biodiversity and community functioning in metacommunities. The relative importance of different factors structuring communities likely changes over successional time, but to date this concept is scarcely documented. In addition, the few studies describing successional dynamics in metacommunity regulation have only focused on a single group of organisms. Here, we report results of an experimental study testing the effect size of initial local community composition and dispersal between local patches on community dynamics of benthic microalgae and their associated bacteria over community succession. Our results show that over time dispersal outweighed initial effects of community composition on microalgal evenness and biomass, microalgal ß-diversity, and the ratio of bacteria to microalgae. At the end of the experiment (ca. 20 microalgae generations), dispersal significantly decreased microalgal evenness and ß-diversity by promoting one regionally superior competitor. Dispersal also decreased the ratio of bacteria to microalgae, while it significantly increased microalgal biomass. These results suggest that the dispersal-mediated establishment of a dominant and superior microalgae species prevented bacteria from gaining competitive advantage over the autotrophs in these metacommunities, ultimately maintaining the provision of autotrophic biomass. Our study emphasizes the importance of time for dispersal to be a relevant community-structuring mechanism. Moreover, we highlight the need for considering multiple competitors in complex metacommunity systems to properly pinpoint the consequences of local change in dominance through dispersal for metacommunity function.


Asunto(s)
Microalgas , Bacterias , Biodiversidad , Biomasa , Ecosistema , Dinámica Poblacional
2.
Microb Ecol ; 71(3): 616-27, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26487437

RESUMEN

Here, we investigated how different plant biomass, and-for one substrate-pH, drive the composition of degrader microbial consortia. We bred such consortia from forest soil, incubated along nine aerobic sequential - batch enrichments with wheat straw (WS1, pH 7.2; WS2, pH 9.0), switchgrass (SG, pH 7.2), and corn stover (CS, pH 7.2) as carbon sources. Lignocellulosic compounds (lignin, cellulose and xylan) were best degraded in treatment SG, followed by CS, WS1 and WS2. In terms of composition, the consortia became relatively stable after transfers 4 to 6, as evidenced by PCR-DGGE profiles obtained from each consortium DNA. The final consortia differed by ~40 % (bacteria) and ~60 % (fungi) across treatments. A 'core' community represented by 5/16 (bacteria) and 3/14 (fungi) bands was discerned, next to a variable part. The composition of the final microbial consortia was strongly driven by the substrate, as taxonomically-diverse consortia appeared in the different substrate treatments, but not in the (WS) different pH one. Biodegradative strains affiliated to Sphingobacterium kitahiroshimense, Raoultella terrigena, Pseudomonas putida, Stenotrophomonas rhizophila (bacteria), Coniochaeta ligniaria and Acremonium sp. (fungi) were recovered in at least three treatments, whereas strains affiliated to Delftia tsuruhatensis, Paenibacillus xylanexedens, Sanguibacter inulus and Comamonas jiangduensis were treatment-specific.


Asunto(s)
Bacterias/metabolismo , Hongos/metabolismo , Lignina/metabolismo , Consorcios Microbianos , Plantas/microbiología , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biomasa , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Filogenia , Plantas/clasificación
3.
Appl Microbiol Biotechnol ; 100(17): 7713-25, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27170322

RESUMEN

Despite multiple research efforts, the current strategies for exploitation of lignocellulosic plant matter are still far from optimal, being hampered mostly by the difficulty of degrading the recalcitrant parts. An interesting approach is to use lignocellulose-degrading microbial communities by using different environmental sources of microbial inocula. However, it remains unclear whether the inoculum source matters for the degradation process. Here, we addressed this question by verifying the lignocellulose degradation potential of wheat (Triticum aestivum) straw by microbial consortia generated from three different microbial inoculum sources, i.e., forest soil, canal sediment and decaying wood. We selected these consortia through ten sequential-batch enrichments by dilution-to-stimulation using wheat straw as the sole carbon source. We monitored the changes in microbial composition and abundance, as well as their associated degradation capacity and enzymatic activities. Overall, the microbial consortia developed well on the substrate, with progressively-decreasing net average generation times. Each final consortium encompassed bacterial/fungal communities that were distinct in composition but functionally similar, as they all revealed high substrate degradation activities. However, we did find significant differences in the metabolic diversities per consortium: in wood-derived consortia cellobiohydrolases prevailed, in soil-derived ones ß-glucosidases, and in sediment-derived ones several activities. Isolates recovered from the consortia showed considerable metabolic diversities across the consortia. This confirmed that, although the overall lignocellulose degradation was similar, each consortium had a unique enzyme activity pattern. Clearly, inoculum source was the key determinant of the composition of the final microbial degrader consortia, yet with varying enzyme activities. Hence, in accord with Beyerinck's, "everything is everywhere, the environment selects" the source determines consortium composition.


Asunto(s)
Bacterias/metabolismo , Celulasas/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Hongos/metabolismo , Lignina/metabolismo , Consorcios Microbianos , Triticum/metabolismo , Bacterias/enzimología , Bacterias/genética , Hongos/enzimología , Hongos/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo
4.
Appl Microbiol Biotechnol ; 100(24): 10463-10477, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27418359

RESUMEN

The selection of microbes by enrichment on plant biomass has been proposed as an efficient way to develop new strategies for lignocellulose saccharification. Here, we report an in-depth analysis of soil-derived microbial consortia that were trained to degrade once-used wheat straw (WS1-M), switchgrass (SG-M) and corn stover (CS-M) under aerobic and mesophilic conditions. Molecular fingerprintings, bacterial 16S ribosomal RNA (rRNA) gene amplicon sequencing and metagenomic analyses showed that the three microbial consortia were taxonomically distinct. Based on the taxonomic affiliation of protein-encoding sequences, members of the Bacteroidetes (e.g. Chryseobacterium, Weeksella, Flavobacterium and Sphingobacterium) were preferentially selected on WS1-M, whereas SG-M and CS-M favoured members of the Proteobacteria (e.g. Caulobacter, Brevundimonas, Stenotrophomonas and Xanthomonas). The highest degradation rates of lignin (~59 %) were observed with SG-M, whereas CS-M showed a high consumption of cellulose and hemicellulose. Analyses of the carbohydrate-active enzymes in the three microbial consortia showed the dominance of glycosyl hydrolases (e.g. of families GH3, GH43, GH13, GH10, GH29, GH28, GH16, GH4 and GH92). In addition, proteins of families AA6, AA10 and AA2 were detected. Analysis of secreted protein fractions (metasecretome) for each selected microbial consortium mainly showed the presence of enzymes able to degrade arabinan, arabinoxylan, xylan, ß-glucan, galactomannan and rhamnogalacturonan. Notably, these metasecretomes contain enzymes that enable us to produce oligosaccharides directly from wheat straw, sugarcane bagasse and willow. Thus, the underlying microbial consortia constitute valuable resources for the production of enzyme cocktails for the efficient saccharification of plant biomass.


Asunto(s)
Bacterias/clasificación , Lignina/metabolismo , Metagenómica , Consorcios Microbianos , Aerobiosis , Bacterias/enzimología , Bacterias/genética , Biotransformación , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Enzimas/metabolismo , Panicum/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Triticum/química , Zea mays/química
5.
Sci Total Environ ; 655: 1457-1467, 2019 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-30577137

RESUMEN

Sewage sludge (SS) reuse in forest plantation as soil fertilizer/amendment has tremendously increased in recent years. However, SS may have high concentrations of potentially toxic elements (PTE), representing a potential risk for soil and the whole ecosystem. This paper was aimed to assess the toxicity of PTE in unfertile tropical soils amended with SS in a commercial Eucalyptus plantation, with an integrated multiple approaches combining: i) the use of a battery of bioassays (Daphnia magna, Pseudokcrichirella subcapitata, Lactuca sativa, and Allium cepa); and ii) the evaluation of some PTE (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and their availability into the pedoenvironment. Differences in total and available PTE between SS doses and time of treatments were evaluated using ANOVA; correlations between PTE and bioassays by a sparse partial robust M-regression (SPRM), while multiple correlations among parameters were performed by principal factor analysis (PFA). Results show that PTE contents in soils tended to increase with SS application doses. However this cannot be assumed as a general rule since in all the investigated treatments the PTE concentrations were consistently below both soil natural background concentrations and quality reference values. Bioassays showed a generalized low eco- and genotoxicity of SS with an increase in toxicity at increasing SS doses but with a clear decreasing trend as time went by. A. cepa was the most sensitive bioassay followed by P. subcapitata > D. magna > L. sativa. Overall, the results indicate that in realistic open field conditions SS risk may be lower than expected due to dynamic decrease in PTE toxicity with time after application. This study has an important implication that open-field trials should be strongly encouraged for evaluating environmental risk of SS application in forestry.


Asunto(s)
Eucalyptus/efectos de los fármacos , Fertilizantes/análisis , Aguas del Alcantarillado/efectos adversos , Contaminantes del Suelo/toxicidad , Eucalyptus/crecimiento & desarrollo , Eucalyptus/fisiología , Agricultura Forestal , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA