Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 101(3): 716-730, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31571287

RESUMEN

Predicting gene regulatory networks (GRNs) from expression profiles is a common approach for identifying important biological regulators. Despite the increased use of inference methods, existing computational approaches often do not integrate RNA-sequencing data analysis, are not automated or are restricted to users with bioinformatics backgrounds. To address these limitations, we developed tuxnet, a user-friendly platform that can process raw RNA-sequencing data from any organism with an existing reference genome using a modified tuxedo pipeline (hisat 2 + cufflinks package) and infer GRNs from these processed data. tuxnet is implemented as a graphical user interface and can mine gene regulations, either by applying a dynamic Bayesian network (DBN) inference algorithm, genist, or a regression tree-based pipeline, rtp-star. We obtained time-course expression data of a PERIANTHIA (PAN) inducible line and inferred a GRN using genist to illustrate the use of tuxnet while gaining insight into the regulations downstream of the Arabidopsis root stem cell regulator PAN. Using rtp-star, we inferred the network of ATHB13, a downstream gene of PAN, for which we obtained wild-type and mutant expression profiles. Additionally, we generated two networks using temporal data from developmental leaf data and spatial data from root cell-type data to highlight the use of tuxnet to form new testable hypotheses from previously explored data. Our case studies feature the versatility of tuxnet when using different types of gene expression data to infer networks and its accessibility as a pipeline for non-bioinformaticians to analyze transcriptome data, predict causal regulations, assess network topology and identify key regulators.


Asunto(s)
Arabidopsis/genética , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Transcriptoma , Algoritmos , Teorema de Bayes , Análisis de Secuencia de ARN
2.
Nat Commun ; 10(1): 5574, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811116

RESUMEN

Stem cells are responsible for generating all of the differentiated cells, tissues, and organs in a multicellular organism and, thus, play a crucial role in cell renewal, regeneration, and organization. A number of stem cell type-specific genes have a known role in stem cell maintenance, identity, and/or division. Yet, how genes expressed across different stem cell types, referred to here as stem-cell-ubiquitous genes, contribute to stem cell regulation is less understood. Here, we find that, in the Arabidopsis root, a stem-cell-ubiquitous gene, TESMIN-LIKE CXC2 (TCX2), controls stem cell division by regulating stem cell-type specific networks. Development of a mathematical model of TCX2 expression allows us to show that TCX2 orchestrates the coordinated division of different stem cell types. Our results highlight that genes expressed across different stem cell types ensure cross-communication among cells, allowing them to divide and develop harmonically together.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , División Celular Asimétrica/genética , Redes Reguladoras de Genes/genética , Raíces de Plantas/genética , Células Madre , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , División Celular Asimétrica/fisiología , Diferenciación Celular , División Celular , Regulación de la Expresión Génica de las Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Ubiquitinación/genética , Ubiquitinas/genética
3.
IEEE Trans Cybern ; 44(8): 1473-84, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24196983

RESUMEN

Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal.


Asunto(s)
Análisis por Conglomerados , Lógica Difusa , Modelos Biológicos , Biología de Sistemas/métodos , Algoritmos , Humanos , Sistema de Señalización de MAP Quinasas , Redes y Vías Metabólicas , Fotosíntesis , Reproducibilidad de los Resultados , Análisis Espacio-Temporal
4.
Front Plant Sci ; 5: 328, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25071810

RESUMEN

The presence of an auxin gradient in the Arabidopsis root is crucial for proper root development and importantly, for stem cell niche (SCN) maintenance. Subsequently, developmental pathways in the root SCN regulate the formation of the auxin gradient. Combinations of experimental data and computational modeling enable the identification of pathways involved in establishing and maintaining the auxin gradient. We describe how the predictive power of these computational models is used to find how genes and their interactions tightly control the formation of an auxin maximum in the SCN. In addition, we highlight known connections between signaling pathways involving auxin and controlling patterning and development in Arabidopsis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA