Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 74(8): 2585-2602, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36749654

RESUMEN

The important role of translational control for maintenance of proteostasis is well documented in plants, but the exact mechanisms that coordinate translation rates during plant development and stress response are not well understood. In Arabidopsis, the translation elongation complex eEF1B consists of three subunits: eEF1Bα, eEF1Bß, and eEF1Bγ. While eEF1Bα and eEF1Bß have a conserved GDP/GTP exchange function, the function of eEF1Bγ is still unknown. By generating Arabidopsis mutants with strongly reduced eEF1Bγ levels, we revealed its essential role during plant growth and development and analysed its impact on translation. To explore the function of the eEF1B subunits under high temperature stress, we analysed their dynamic localization as green fluorescent protein fusions under control and heat stress conditions. Each of these fusion proteins accumulated in heat-induced cytoplasmic foci and co-localized with the stress granule marker poly(A)-binding protein 8-mCherry. Protein-protein interaction studies and co-expression analyses indicated that eEF1Bß physically interacted with both of the other subunits and promoted their recruitment to cytoplasmic foci. These data provide new insights into the mechanisms allowing for rapid adaptation of translation rates during heat stress response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/análisis , Factor 1 de Elongación Peptídica/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant J ; 102(4): 703-717, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31849124

RESUMEN

The two paralogous Arabidopsis genes MAINTENANCE OF MERISTEMS (MAIN) and MAINTENANCE OF MERISTEMS LIKE1 (MAIL1) encode a conserved retrotransposon-related plant mobile domain and are known to be required for silencing of transposable elements (TE) and for primary root development. Loss of function of either MAIN or MAIL1 leads to release of heterochromatic TEs, reduced condensation of pericentromeric heterochromatin, cell death of meristem cells and growth arrest of the primary root soon after germination. Here, we show that they act in one protein complex that also contains the inactive isoform of PROTEIN PHOSPHATASE 7 (PP7), which is named PROTEIN PHOSPHATASE 7-LIKE (PP7L). PP7L was previously shown to be important for chloroplast biogenesis and efficient chloroplast protein synthesis. We show that loss of PP7L function leads to the same root growth phenotype as loss of MAIL1 or MAIN. In addition, pp7l mutants show similar silencing defects. Double mutant analyses confirmed that the three proteins act in the same molecular pathway. The primary root growth arrest, which is associated with cell death of stem cells and their daughter cells, is a consequence of genome instability. Our data demonstrate so far unrecognized functions of an inactive phosphatase isoform in a protein complex that is essential for silencing of heterochromatic elements and for maintenance of genome stability in dividing cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Elementos Transponibles de ADN/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Silenciador del Gen , Germinación , Heterocromatina/genética , Isoenzimas , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Mutación , Proteínas Nucleares/genética , Fenotipo , Fosfoproteínas Fosfatasas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Retroelementos/genética
3.
Life Sci Alliance ; 6(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265897

RESUMEN

The coordination of cell division with stress response is essential for maintaining genome stability in plant meristems. Proteins involved in pre-mRNA splicing are important for these processes in animal and human cells. Based on its homology to the splicing factor SART1, which is implicated in the control of cell division and genome stability in human cells, we analyzed if MDF has similar functions in plants. We found that MDF associates with U4/U6.U5 tri-snRNP proteins and is essential for correct splicing of 2,037 transcripts. Loss of MDF function leads to cell division defects and cell death in meristems and was associated with up-regulation of stress-induced genes and down-regulation of mitotic regulators. In addition, the mdf-1 mutant is hypersensitive to DNA damage treatment supporting its role in coordinating stress response with cell division. Our analysis of a dephosphomutant of MDF suggested how its protein activity might be controlled. Our work uncovers the conserved function of a plant splicing factor and provides novel insight into the interplay of pre-mRNA processing and genome stability in plants.


Asunto(s)
Arabidopsis , Ribonucleoproteína Nuclear Pequeña U5 , Animales , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , División Celular/genética , Inestabilidad Genómica , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA