Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(5): 122, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052684

RESUMEN

OBJECTIVE: Intriguingly, hyperinsulinemia, and hyperglycemia can predispose insulin resistance, obesity, and type 2 diabetes, leading to metabolic disturbances. Conversely, physical exercise stimulates skeletal muscle glucose uptake, improving whole-body glucose homeostasis. Therefore, we investigated the impact of short-term physical activity in a mouse model (Slc2a4+/-) that spontaneously develops hyperinsulinemia and hyperglycemia even when fed on a chow diet. METHODS: Slc2a4+/- mice were used, that performed 5 days of endurance or strength exercise training. Further analysis included physiological tests (GTT and ITT), skeletal muscle glucose uptake, skeletal muscle RNA-sequencing, mitochondrial function, and experiments with C2C12 cell line. RESULTS: When Slc2a4+/- mice were submitted to the endurance or strength training protocol, improvements were observed in the skeletal muscle glucose uptake and glucose metabolism, associated with broad transcriptomic modulation, that was, in part, related to mitochondrial adaptations. The endurance training, but not the strength protocol, was effective in improving skeletal muscle mitochondrial activity and unfolded protein response markers (UPRmt). Moreover, experiments with C2C12 cells indicated that insulin or glucose levels could contribute to these mitochondrial adaptations in skeletal muscle. CONCLUSIONS: Both short-term exercise protocols were efficient in whole-body glucose homeostasis and insulin resistance. While endurance exercise plays an important role in transcriptome and mitochondrial activity, strength exercise mostly affects post-translational mechanisms and protein synthesis in skeletal muscle. Thus, the performance of both types of physical exercise proved to be a very effective way to mitigate the impacts of hyperglycemia and hyperinsulinemia in the Slc2a4+/- mouse model.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Resistencia a la Insulina , Ratones , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo
2.
J Physiol ; 600(4): 797-813, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33450053

RESUMEN

KEY POINTS: Time-restricted feeding (TRF, in which energy intake is restricted to 8 h/day during the dark phase) alone or combined with aerobic exercise (AE) training can prevent weight gain and metabolic disorders in Swiss mice fed a high-fat diet. The benefits of TRF combined with AE are associated with improved hepatic metabolism and decreased hepatic lipid accumulation. TRF combined with AE training increased fatty acid oxidation and decreased expression of lipogenic and gluconeogenic genes in the liver of young male Swiss mice. TRF combined with AE training attenuated the detrimental effects of high-fat diet feeding on the insulin signalling pathway in the liver. ABSTRACT: Time-restricted feeding (TRF) or physical exercise have been shown to be efficient in the prevention and treatment of metabolic disorders; however, the additive effects of TRF combined with aerobic exercise (AE) training on liver metabolism have not been widely explored. In this study TRF (8 h in the active phase) and TRF combined with AE (TRF+Exe) were compared in male Swiss mice fed a high-fat diet, with evaluation of the effects on insulin sensitivity and expression of hepatic genes involved in fatty acid oxidation, lipogenesis and gluconeogenesis. As in previous reports, we show that TRF alone (eating only between zeitgeber time 16 and 0) was sufficient to reduce weight and adiposity gain, increase fatty acid oxidation and decrease lipogenesis genes in the liver. In addition, we show that mice of the TRF+Exe group showed additional adaptations such as increased oxygen consumption ( V̇O2${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ ), carbon dioxide production ( V̇CO2${\dot V_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}}$ ) and production of ketone bodies (ß-hydroxybutyrate). Also, TRF+Exe attenuated the negative effects of high-fat diet feeding on the insulin signalling pathway (insulin receptor, insulin receptor substrate, Akt), and led to increased fatty acid oxidation (Ppara, Cpt1a) and decreased gluconeogenic (Fbp1, Pck1, Pgc1a) and lipogenic (Srebp1c, Cd36) gene expression in the liver. These molecular results were accompanied by increased glucose metabolism, lower serum triglycerides and reduced hepatic lipid content in the TRF+Exe group. The data presented in this study show that TRF alone has benefits but TRF+Exe has additive benefits and can mitigate the harmful effects of consuming a high-fat diet on body adiposity, liver metabolism and glycaemic homeostasis in young male Swiss mice.


Asunto(s)
Resistencia a la Insulina , Enfermedades Metabólicas , Animales , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Masculino , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Aumento de Peso
3.
Amino Acids ; 53(9): 1391-1403, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34255136

RESUMEN

Interventions that can modulate subcutaneous white adipose tissue (scWAT) function, such as exercise training and nutritional components, like taurine, modulate the inflammatory process, therefore, may represent strategies for obesity treatment. We investigated the effects of taurine supplementation in conjunction with exercise on inflammatory and oxidative stress markers in plasma and scWAT of obese women. Sixteen obese women were randomized into two groups: Taurine supplementation group (Tau, n = 8) and Taurine supplementation + exercise group (Tau + Exe, n = 8). The intervention was composed of daily taurine supplementation (3 g) and exercise training for 8 weeks. Anthropometry, body fat composition, and markers of inflammatory and oxidative stress were determined in plasma and scWAT biopsy samples before and after the intervention. We found that, although taurine supplementation increased taurine plasma levels, no changes were observed for the anthropometric characteristics. However, Tau alone decreased interleukin-6 (IL-6), and in conjunction with exercise (Tau + Exe), increased anti-inflammatory interleukins (IL-15 and IL10), followed by reduced IL1ß gene expression in the scWAT of obese women. Tau and Tau + Exe groups presented reduced adipocyte size and increased connective tissue and multilocular droplets. In conclusion, taurine supplementation in conjunction with exercise modulated levels of inflammatory markers in plasma and scWAT, and improved scWAT plasticity in obese women, promoting protection against obesity-induced inflammation. TRN NCT04279600 retrospectively registered on August 18, 2019.


Asunto(s)
Tejido Adiposo Blanco/fisiología , Citocinas/sangre , Suplementos Dietéticos , Ejercicio Físico , Obesidad/terapia , Grasa Subcutánea/fisiología , Taurina/administración & dosificación , Tejido Adiposo , Adulto , Biomarcadores/sangre , Composición Corporal , Femenino , Humanos , Persona de Mediana Edad , Obesidad/sangre , Obesidad/patología , Adulto Joven
4.
Exerc Immunol Rev ; 27: 7-23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33965898

RESUMEN

The hypothalamus plays a critical role in the control of food consumption and energy expenditure. Fatty diets can elicit an inflammatory response in specific hypothalamic cells, including astrocytes, tanycytes, and microglia, disrupting anorexigenic signals in region-specific hypothalamic neurons, contributing to overeating and body weight gain. In this study, we present an update regarding the knowledge of the effects of physical exercise on inflammatory signaling and circuits to control hunger in the hypothalamus in obesity conditions. To try to understand changes in the hypothalamus, we review the use of magnetic resonance/anorexigenic hormone analysis in humans, as well as in animal models to explore the physiological and molecular mechanism by which exercise modulates satiety signals, such as the central anti-inflammatory response, myokine delivery from skeletal muscle, and others. The accumulation of scientific evidence in recent years allows us to understand that exercise contributes to weight control, and it is managed by mechanisms that go far beyond "burning calories."


Asunto(s)
Ejercicio Físico , Hipotálamo , Saciedad , Animales , Humanos , Inflamación , Obesidad
5.
Mol Biol Rep ; 48(5): 4637-4645, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34036481

RESUMEN

Obesity is a chronic, non-transmissible and multifactorial disease commonly associated with systemic inflammation and damage to health. This disorder has been pointed out as leading to the development of a diversity of eye diseases and, consequently, damage to visual acuity. More specifically, cardiometabolic risk is associated with lacrimal gland dysfunctions, since it changes the inflammatory profile favoring the development and worsening of dry eye disease. In more severe and extreme cases, obesity, inflammation, and diabetes mellitus type 2 can trigger the total loss of vision. In this scenario, besides its numerous metabolic functions, clusterin, an apolipoprotein, has been described as protective to the ocular surface through the seal mechanism. Thus, the current review aimed to explain the role of clusterin in dry eye disease that can be triggered by obesity and diabetes.


Asunto(s)
Clusterina/genética , Diabetes Mellitus Tipo 2/genética , Síndromes de Ojo Seco/genética , Obesidad/genética , Apolipoproteínas/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Síndromes de Ojo Seco/etiología , Síndromes de Ojo Seco/patología , Ojo/metabolismo , Ojo/patología , Humanos , Inflamación/etiología , Inflamación/genética , Inflamación/patología , Obesidad/complicaciones , Obesidad/patología
6.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203825

RESUMEN

Obesity is closely related to insulin resistance and type 2 diabetes genesis. The liver is a key organ to glucose homeostasis since insulin resistance in this organ increases hepatic glucose production (HGP) and fasting hyperglycemia. The protein-tyrosine phosphatase 1B (PTP1B) may dephosphorylate the IR and IRS, contributing to insulin resistance in this organ. Aerobic exercise is a great strategy to increase insulin action in the liver by reducing the PTP1B content. In contrast, no study has shown the direct effects of strength training on the hepatic metabolism of PTP1B. Therefore, this study aims to investigate the effects of short-term strength exercise (STSE) on hepatic insulin sensitivity and PTP1B content in obese mice, regardless of body weight change. To achieve this goal, obese Swiss mice were submitted to a strength exercise protocol lasting 15 days. The results showed that STSE increased Akt phosphorylation in the liver and enhanced the control of HGP during the pyruvate tolerance test. Furthermore, sedentary obese animals increased PTP1B content and decreased IRS-1/2 tyrosine phosphorylation; however, STSE was able to reverse this scenario. Therefore, we conclude that STSE is an important strategy to improve the hepatic insulin sensitivity and HGP by reducing the PTP1B content in the liver of obese mice, regardless of changes in body weight.


Asunto(s)
Peso Corporal , Resistencia a la Insulina , Condicionamiento Físico Animal , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Adiposidad , Animales , Regulación hacia Abajo , Glucosa/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Ratones Obesos , Entrenamiento de Fuerza , Transducción de Señal
7.
J Cell Biochem ; 120(1): 697-704, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30206970

RESUMEN

The obesity is a result of energy imbalance and the increase in thermogenesis seems an interesting alternative for the treatment of this disease. The mechanism of energy expenditure through thermogenesis is tightly articulated in the hypothalamus by leptin. The hypothalamic extracellular signal-regulated kinase-1/2 (ERK1/2) is a key mediator of the thermoregulatory effect of leptin and mediates the sympathetic signal to the brown adipose tissue (BAT). In this context, physical exercise is one of the main interventions for the treatment of obesity. Thus, this study aimed to verify the effects of acute physical exercise on leptin-induced hypothalamic ERK1/2 phosphorylation and thermogenesis in obese mice. Here we showed that acute physical exercise reduced the fasting glucose of obese mice and increased leptin-induced hypothalamic p-ERK1/2 and uncoupling protein 1 (UCP1) content in BAT ( P < 0.05). These molecular changes are accompanied by an increased oxygen uptake (VO 2 ) and heat production in obese exercised mice ( P < 0.05). The increased energy expenditure in the obese exercised animals occurred independently of changes in spontaneous activity. Thus, this is the first study demonstrating that acute physical exercise can increase leptin-induced hypothalamic ERK1/2 phosphorylation and energy expenditure of obese mice.


Asunto(s)
Hipotálamo/metabolismo , Leptina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Obesidad/metabolismo , Condicionamiento Físico Animal , Termogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Animales , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/fisiología , Inyecciones Intraperitoneales , Leptina/administración & dosificación , Ratones , Ratones Obesos , Consumo de Oxígeno/fisiología , Fosforilación/efectos de los fármacos , Proteína Desacopladora 1/metabolismo
8.
Eur J Neurosci ; 50(7): 3181-3190, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31206806

RESUMEN

Adiponectin is an adipokine that acts in the control of energy homeostasis. The adaptor protein containing the pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1) is a key protein in the adiponectin signaling. The APPL1 mediates a positive effect on the insulin signaling through the interaction with the phosphoinositide 3-kinase (PI3K). Thus, the present study aimed to explore the effects of an acute physical exercise session on the hypothalamic adiponectin signaling. Firstly, using bioinformatics analysis, we found a negative correlation between hypothalamic APPL1 mRNA levels and food consumption in several strains of genetically diverse BXD mice. Also, the mice and the human database revealed a positive correlation between the levels of APPL1 mRNA and PI3K mRNA. At the molecular level, the exercised mice showed increased APPL1 and PI3K (p110) protein contents in the hypothalamus of Swiss mice. Furthermore, the exercise increases co-localization between APPL1 and PI3K p110 predominantly in neurons of the arcuate nucleus of hypothalamus (ARC). Finally, we found an acute exercise session reduced the food intake 5 hr after the end of fasting. In conclusion, our results indicate that physical exercise reduces the food intake and increases some proteins related to adiponectin pathway in the hypothalamus of lean mice.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hipotálamo/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Ingestión de Alimentos/fisiología , Masculino , Ratones , ARN Mensajero/metabolismo , Transducción de Señal
9.
Brain Behav Immun ; 79: 284-293, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30797044

RESUMEN

The consumption of saturated fatty acids is one of the leading risk factors for Alzheimer's Disease (AD) development. Indeed, the short-term consumption of a high-fat diet (HFD) is related to increased inflammatory signals in the hippocampus; however, the potential molecular mechanisms linking it to AD pathogenesis are not fully elucidated. In our study, we investigated the effects of short-term HFD feeding (within 3, 7 and 10 days) in AD markers and neuroinflammation in the hippocampus of mice. The short period of HFD increased fasting glucose and HOMA-IR. Also, mice fed HFD increased the protein content of ß-Amyloid, pTau, TNFα, IL1ß, pJNK, PTP1B, peIF2α, CHOP, Caspase3, Cleaved-Caspase3 and Alzheimer-related genes (Bax, PS1, PEN2, Aph1b). At 10 days, both neuronal (N2a) and microglial (BV2) cells presented higher expression of inflammatory and apoptotic genes when stimulated with palmitate. These findings suggest that a short period of consumption of a diet rich in saturated fat is associated with activation of inflammatory, ER stress and apoptotic signals in the hippocampus of young mice.


Asunto(s)
Enfermedad de Alzheimer/etiología , Dieta Alta en Grasa/efectos adversos , Hipocampo/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Apoptosis , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Inflamación/metabolismo , Interleucina-1beta , Ratones , Ratones Transgénicos , Microglía/metabolismo , Neuronas/metabolismo , Fosforilación , Transducción de Señal/efectos de los fármacos , Lóbulo Temporal/metabolismo , Proteínas tau/metabolismo
10.
Heart Fail Rev ; 23(1): 123-129, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28948410

RESUMEN

Loss of cardiomyocytes occurs with aging and contributes to cardiovascular complications. In the present study, we highlighted the role of clusterin, a protein that has recently been associated with the protection of cardiomyocytes from apoptosis. Clusterin protects cardiac cells against damage from myocardial infarction, transplant, or myocarditis. Clusterin can act directly or indirectly on apoptosis by regulating several intracellular pathways. These pathways include (1) the oxidant and inflammatory program, (2) insulin growth factor 1 (IGF-1) pathway, (3) KU70 / BCL-2-associated X protein (BAX) pathway, (4) tumor necrosis factor alpha (TNF-α) pathway, (5) BCL-2 antagonist of cell death (BAD) pathway, and (6) mitogen-activated protein kinase (MAPK) pathway. Given the key role of clusterin in preventing loss of cardiac tissue, modulating the expression and function of this protein carries the potential of improving cardiovascular care in the future.


Asunto(s)
Apoptosis/fisiología , Clusterina/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Humanos , Miocitos Cardíacos/citología
11.
Cytokine ; 110: 87-93, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29705396

RESUMEN

Adiponectin is considered an adipokine that has essential anti-inflammatory and insulin-sensitivity actions. The adaptor protein containing the pleckstrin homology domain, the phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1) is a protein involved in adiponectin signaling that plays a role in many physiological and pathophysiological processes. In the central nervous system, adiponectin can potentiate the effects of leptin in the arcuate proopiomelanocortin (POMC) neurons. However, the role of APPL1 in the hypothalamus is not well understood. Therefore, in this study, we explored the effects of acute physical exercise on APPL1 protein content in the hypothalamus and food intake control in leptin stimulated-obese mice. Here we show that acute exercise increased serum adiponectin levels and APPL1 content in the hypothalamus, which were followed by reduced food intake in obese mice. Further, at the molecular level, the exercised obese mice increased the protein kinase B (Akt) signaling in the hypothalamus and attenuated the mammalian homolog of Drosophila tribbles protein 3 (TRB3) levels. In conclusion, the results indicate physical exercise is capable of increasing APPL1 protein content in the hypothalamus of leptin stimulated-obese mice and modulating food intake.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hipotálamo/metabolismo , Condicionamiento Físico Animal/fisiología , Adiponectina/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Ingestión de Alimentos/fisiología , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Leptina/metabolismo , Ratones , Ratones Obesos , Neuronas/metabolismo , Neuronas/fisiología , Obesidad/metabolismo , Obesidad/fisiopatología , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
12.
Drug Dev Res ; 78(5): 203-209, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28718949

RESUMEN

Preclinical Research Metabolic disorders are responsible for more than 60% of all deaths worldwide. Calcitriol or vitamin D (vitD) deficiency is associated with a large proportion of these diseases is an important therapeutic target for exploration. This study evaluated the administration of high doses of vitD (3000 IU/kg) in obese and insulin-resistant C57BL/6J mice. Our results demonstrated that although high doses of vitD provided metabolic benefits such as increased insulin sensitivity and decreased body mass, this was associated with significant damage in the kidneys of obese mice. These findings support the role of vitD as a therapeutic strategy against metabolic disorders. However, caution is required with the dose administrated, and the renal damage associated still needs to be investigated. Drug Dev Res 78 : 203-209, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Metabolismo Energético/efectos de los fármacos , Obesidad/tratamiento farmacológico , Vitamina D/administración & dosificación , Animales , Índice de Masa Corporal , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Relación Dosis-Respuesta a Droga , Resistencia a la Insulina , Masculino , Ratones , Vitamina D/efectos adversos
13.
J Physiol ; 592(6): 1325-40, 2014 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-24396063

RESUMEN

Insulin plays an important role in the control of hepatic glucose production. Insulin resistant states are commonly associated with excessive hepatic glucose production, which contributes to both fasting hyperglycaemia and exaggerated postprandial hyperglycaemia. In this regard, increased activity of phosphatases may contribute to the dysregulation of gluconeogenesis. Mitogen-activated protein kinase phosphatase-3 (MKP-3) is a key protein involved in the control of gluconeogenesis. MKP-3-mediated dephosphorylation activates FoxO1 (a member of the forkhead family of transcription factors) and subsequently promotes its nuclear translocation and binding to the promoters of gluconeogenic genes such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). In this study, we investigated the effects of exercise training on the expression of MKP-3 and its interaction with FoxO1 in the livers of obese animals. We found that exercised obese mice had a lower expression of MKP-3 and FoxO1/MKP-3 association in the liver. Further, the exercise training decreased FoxO1 phosphorylation and protein levels of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and gluconeogenic enzymes (PEPCK and G6Pase). These molecular results were accompanied by physiological changes, including increased insulin sensitivity and reduced hyperglycaemia, which were not caused by reductions in total body mass. Similar results were also observed with oligonucleotide antisense (ASO) treatment. However, our results showed that only exercise training could reduce an obesity-induced increase in HNF-4α protein levels while ASO treatment alone had no effect. These findings could explain, at least in part, why additive effects of exercise training treatment and ASO treatment were not observed. Finally, the suppressive effects of exercise training on MKP-3 protein levels appear to be related, at least in part, to the reduced phosphorylation of Extracellular signal-regulated kinases (ERK) in the livers of obese mice.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/metabolismo , Gluconeogénesis/fisiología , Hígado/metabolismo , Obesidad/metabolismo , Obesidad/terapia , Condicionamiento Físico Animal/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Fosfatasa 6 de Especificidad Dual/antagonistas & inhibidores , Fosfatasa 6 de Especificidad Dual/genética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Resistencia a la Insulina , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Obesidad/etiología , Oligodesoxirribonucleótidos Antisentido/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , Factores de Transcripción/metabolismo
14.
Hippocampus ; 24(6): 703-11, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24916112

RESUMEN

Diabetes mellitus is a chronic disease that has been associated with memory loss, neurological disorders, and Alzheimer's disease. Some studies show the importance of physical exercise to prevent and minimize various neurological disorders. It is believed that the positive effects of exercise on brain functions are mediated by brain insulin and insulin-like growth factor-1 (IGF-1) signaling. In this study, we investigate the role of swimming exercise training on hippocampus proteins related to insulin/IGF-1 signaling pathway in Type 1 diabetic rats and its effects on spatial memory. Wistar rats were divided into four groups namely sedentary control, trained control, sedentary diabetic (SD), and trained diabetic (TD). Diabetes was induced by Alloxan (ALX) (32 mg/kg b.w.). The training program consisted in swimming 5 days/week, 1 h/day, per 6 weeks, supporting an overload corresponding to 90% of the anaerobic threshold. We employed ALX-induced diabetic rats to explore learning and memory abilities using Morris water maze test. At the end of the training period, the rats were sacrificed 48 h after their last exercise bout when blood samples were collected for serum glucose, insulin, and IGF-1 determinations. Hippocampus was extracted to determinate protein expression (IR, IGF-1R, and APP) and phosphorylation (AKT-1, AKT-2, Tau, and ß-amyloide proteins) by Western Blot analysis. All dependent variables were analyzed by two-way analysis of variance with significance level of 5%. Diabetes resulted in hyperglycemia and hypoinsulinemia in both SD and TD groups (P < 0.05); however, in the training-induced group, there was a reduction in blood glucose in TD. The average frequency in finding the platform decreased in SD rats; however, exercise training improved this parameter in TD rats. Aerobic exercise decreased Tau phosphorylation and APP expression, and increased some proteins related to insulin/IGF-1 pathway in hippocampus of diabetic rats. Thus, these molecular adaptations from exercise training might contribute to improved spatial learning and memory in diabetic organisms.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/sangre , Condicionamiento Físico Animal , Memoria Espacial/fisiología , Natación , Animales , Análisis Químico de la Sangre , Glucemia , Western Blotting , Peso Corporal , Hipocampo/fisiopatología , Hiperglucemia/fisiopatología , Masculino , Aprendizaje por Laberinto/fisiología , Actividad Motora , Distribución Aleatoria , Ratas Wistar , Análisis y Desempeño de Tareas
15.
Life Sci ; 345: 122567, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492919

RESUMEN

The aim was to understand the direct impact of aerobic short-term exercise on lipid metabolism, specifically in regulating the mitochondrial carrier homolog 2 (MTCH2) and how it interferes with lipid metabolism in mesenteric adipose tissue. Swiss mice were divided into three groups: control, sedentary obese, and exercised obese. The obese groups were induced into obesity for fourteen weeks of a high-fat diet, and the trained submitted to seven aerobic exercise sessions. The exercise proved the significant increase of the pPerilipin-1, a hormone-sensitive lipase gene, and modulates lipid metabolism by increasing the expression of Mtch2 and acetyl Co-A carboxylase, perhaps occurring as feedback to regulate lipid metabolism in adipose tissue. In conclusion, we demonstrate, for the first time, how aerobic physical exercise increases Mtch2 transcription in mesenteric adipose tissue. This increase was due to changes in energy demand caused by exercise, confirmed by observing the significant reduction in mesenteric adipose tissue mass in the exercised group. Also, we showed that physical exercise increased the phosphorylative capacity of PLIN1, a protein responsible for the degradation of fatty acids in the lipid droplet, providing acyl and glycerol for cellular metabolism. Although our findings demonstrate evidence of MTCH2 as a protein that regulates lipid homeostasis, scant knowledge exists concerning the signaling of the MTCH2 pathway in regulatingfatty acid metabolism. Therefore, unveiling the means of molecular signaling of MTCH2 demonstrates excellent potential for treating obesity.


Asunto(s)
Tejido Adiposo , Metabolismo de los Lípidos , Proteínas de Transporte de Membrana Mitocondrial , Obesidad , Condicionamiento Físico Animal , Animales , Ratones , Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Lípidos , Ratones Obesos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Obesidad/metabolismo , Condicionamiento Físico Animal/fisiología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-38197701

RESUMEN

White adipose tissue (WAT) controls energy storage, expenditure, and endocrine function. Rho-kinase (ROCK) is related to impaired thermogenesis, downregulation of preadipocyte differentiation, and adipokine production. Furthermore, WAT ROCK responds to metabolic stress from high-fat diets or diabetes. However, ROCK distribution in adipose depots and its response to aging and sex remain unclear. Thus, we aim to investigate ROCK function in adipose tissue of rodent and human in response to aging and sex. We observed specific differences in the ROCK1/2 distribution in inguinal WAT (ingWAT), perigonadal WAT (pgWAT), and brown adipose tissue of male and female rodents. However, ROCK2 expression was lower in female ingWAT compared with males, a fact that was not observed in the other depots. In the pgWAT and ingWAT of male and female rodents, ROCK activity increased during development. Moreover, middle-aged female rodents and humans showed downregulation in ROCK activity after acute physical exercise. Interestingly, ROCK levels were associated with several inflammatory markers both in rats and humans WAT (Nfkb1, Tnf, Il1b, Il6, and Mcp1). Induction of cell senescence by etoposide elevates ROCK activity in human preadipocytes; however, silencing ROCK1/2 demonstrates improvement in the inflammatory and cell senescence state. Using public databases, several pathways were strongly associated with ROCK modulation in WAT. In summary, WAT ROCK increases with development in association with inflammatory markers. Further, ROCK activity was attenuated by acute physical exercise, implicating it as a possible therapeutic target for metabolism improvement mediated by adipose tissue inflammatory state changes.


Asunto(s)
Roedores , Quinasas Asociadas a rho , Humanos , Ratas , Masculino , Femenino , Animales , Persona de Mediana Edad , Quinasas Asociadas a rho/fisiología , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Envejecimiento , Tejido Adiposo
17.
Immun Ageing ; 10(1): 8, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23442260

RESUMEN

It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats. The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise. Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was reversed by exercise. Aging rats also increased the IRß/PTP-1B and IRS-1/PTP-1B association in the liver when compared with young rats. Conversely, in the liver of exercised old rats, IRß/PTP-1B and IRS-1/PTP-1B association was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise, the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights into the mechanisms by which exercise restores insulin signalling in liver during aging.

18.
Lipids Health Dis ; 12: 29, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23496920

RESUMEN

BACKGROUND: Obesity, oxidative stress and inflammation, by triggering insulin resistance, may contribute to the accumulation of hepatic fat, and this accumulation by lipotoxicity can lead the organ to fail. Because obesity is growing at an alarming rate and, worryingly, in a precocious way, the present study aimed to investigate the effects of moderate physical training performed from childhood to adulthood on liver fat metabolism in rats. METHODS: Twenty rats that were 28 days old were divided into two groups: control (C) and trained (T). The C Group was kept in cages without exercise, and the T group was submitted to swimming exercise for 1 hour/day, 5 days/week from 28 to 90 days of age (8 weeks) at 80% of the anaerobic threshold determined by the lactate minimum test. At the end of the experiment, the body weight gain, insulin sensitivity (glucose disappearance rate during the insulin tolerance test), concentrations of free fatty acids (FFA) and triglycerides (TG) and hepatic lipogenic rate were analyzed. For the statistical analysis, the Student t-test was used with the level of significance preset at 5%. RESULTS: The T group showed lower body weight gain, FFA concentrations, fat accumulation, hepatic lipogenic rate and insulin resistance. CONCLUSION: The regular practice of moderate physical exercise from childhood can contribute to the reduction of obesity and insulin resistance and help prevent the development of accumulation of hepatic fat in adulthood.


Asunto(s)
Ácidos Grasos/metabolismo , Lipogénesis , Hígado/metabolismo , Condicionamiento Físico Animal , Tejido Adiposo/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Peso Corporal , Insulina/sangre , Resistencia a la Insulina , Ácido Láctico/metabolismo , Ratas , Ratas Wistar , Natación , Triglicéridos/metabolismo
19.
Life Sci ; 329: 121916, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37419412

RESUMEN

Obesity can exacerbate the systemic inflammatory process, leading to increased infiltration of monocytes in white adipose tissue (WAT) and polarization of these cells into pro-inflammatory M1 macrophages, while reducing the population of anti-inflammatory M2 macrophages. Aerobic exercise has been shown to be effective in reducing the pro-inflammatory profile. However, the impact of strength training and the duration of training on macrophage polarization in the WAT of obese individuals have not been widely studied. Therefore, our aim was to investigate the effects of resistance exercise on macrophage infiltration and polarization in the epididymal and subcutaneous adipose tissue of obese mice. We compared the following groups: Control (CT), Obese (OB), Obese 7-day strength training (STO7d), and Obese 15-day strength training (STO15d). Macrophage populations were evaluated by flow cytometry: total macrophages (F4/80+), M1 (CD11c), and M2 (CD206) macrophages. Our results demonstrated that both training protocols improved peripheral insulin sensitivity by increasing AKT phosphorylation (Ser473). Specifically, the 7-day training regimen reduced total macrophage infiltration and M2 macrophage levels without altering M1 levels. In the STO15d group, significant differences were observed in total macrophage levels, M1 macrophages, and the M1/M2 ratio compared to the OB group. In the epididymal tissue, a reduction in the M1/M2 ratio was observed in the STO7d group. Overall, our data demonstrate that 15 days of strength exercise can reduce the M1/M2 ratio of macrophages in white adipose tissue.


Asunto(s)
Tejido Adiposo , Resistencia a la Insulina , Ratones , Animales , Inflamación , Tejido Adiposo Blanco , Obesidad/terapia , Macrófagos , Ratones Endogámicos C57BL , Ratones Obesos
20.
J Nutr Biochem ; 119: 109410, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37364793

RESUMEN

The gut has been suggested as the first organ to be affected by unbalanced diets contributing to the obesogenic process. This study aimed to test a short time-course exposition model to a known pro- or anti-inflammatory enriched fatty diet to understand the early gut alterations. Male mice were exposed to the chow diet (CT), high-fat (HF) diet, or a high-fat diet partially replaced on flaxseed oil (FS), rich in omega-3 (ω3), for 14 days. HF and FS increased the total body weight mass compared with the CT group, but FS reduced the epididymal fat depot compared to HF. The bioinformatics from mice and human databases showed the Zo1-Ocln-Cldn7 tight junctions as the main protein-triad. In the ileum, the HF diet has increased IL1ß transcript and IL1ß, TNFα, and CD11b proteins, but reduced the tight junctions (Zo1, Ocln, and Cld7) compared to the CT group. Despite the FS diet being partially efficient in protecting the ileum against inflammation, the tight junctions were increased, compared to the HF group. The GPR120 and GPR40 receptors were unaffected by diets, but GPR120 was colocalized on the surface of ileum macrophages. The short period of a high-fat diet was enough to start the obesogenic process, ileum inflammation, and reduce the tight junctions. Flaxseed oil did not protect efficiently against dysmetabolism. Still, it increased the tight junctions, even without alteration on inflammatory parameters, suggesting the protection against gut permeability during early obesity development.


Asunto(s)
Ácidos Grasos Omega-3 , Aceite de Linaza , Humanos , Masculino , Animales , Ratones , Aceite de Linaza/farmacología , Uniones Estrechas/metabolismo , Ácidos Grasos Insaturados , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Ácidos Grasos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA