RESUMEN
Mitochondria are the major organelles of energy production; however, active mitochondria can decline their energetic role and show a dysfunctional status. Mitochondrial dysfunction was induced by high non-physiological level of L-galactone-1,4-lactone (L-GalL), the precursor of ascorbate (AsA), in plant mitochondria. The dysfunction induced by L-GalL was associated with the fault in the mitochondrial electron partition and reactive oxygen species (ROS) over-production. Using mitochondria from RNAi-plant lines harbouring silenced L-galactone-1,4-lactone dehydrogenase (L-GalLDH) activity, it was demonstrated that such dysfunction is dependent on this enzyme activity. The capacity of alternative respiration was strongly decreased by L-GalL, probably mediated by redox-inactivation of the alternative oxidase (AOX) enzyme. Although, alternative respiration was shown to be the key factor that helps support AsA synthesis in dysfunctional mitochondria. Experiments with respiratory inhibitors showed that ROS formation and mitochondrial dysfunction were more associated with the decline in the activities of COX (cytochrome oxidase) and particularly AOX than with the lower activities of respiratory complexes I and III. The application of high L-GalL concentrations induced proteomic changes that indicated alterations in proteins related to oxidative stress and energetic status. However, supra-optimal L-GalL concentration was not deleterious for plants. Instead, the L-GalLDH activity could be positive. Indeed, it was found that wild type plants performed better growth than L-GalLDH-RNAi plants in response to high non-physiological L-GalL concentrations.
Asunto(s)
Proteínas Mitocondriales , Proteómica , Respiración de la Célula , Lactonas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The papaya is a commercially important fruit commodity worldwide. Being a climacteric fruit, it is highly perishable. Thus, for the transportation of papaya fruit for long distances without loss of quality, it is necessary to avoid the autocatalytic effect of ethylene in accelerating the ripening of the fruit. This work addresses the application of heterogeneous photocatalysis to the degradation of ethylene. A TiO2 sol-gel supported on polypropylene (PP) and on glass was used as the catalytic material, and a UV-A lamp was employed as the radiation source. Initially, a concentration of 500 ppbv ethylene was exposed to the catalyst material irradiated by UV-A radiation. A sensitive photoacoustic spectrometer was used to monitor the photocatalytic activity. The TiO2 sol-gel supported on the glass substrate was more efficient than on the PP in degrading the ethylene. Under direct UV-A exposure, the skin appearance of 'Golden' papaya was damaged, depreciating the fruit quality and thus preventing its commercialization. However, the feasibility of the heterogeneous photocatalysis to preserve the fruit quality was achieved when ethylene was removed from the storage ambient using fans, and then, this plant hormone was degraded by a reactor set apart in a ventilation closed system.