Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 21(24): 10409-10415, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34882420

RESUMEN

Magnetic nanowires (NWs) are essential building blocks of spintronics devices as they offer tunable magnetic properties and anisotropy through their geometry. While the synthesis and compositional control of NWs have seen major improvements, considerable challenges remain for the characterization of local magnetic features at the nanoscale. Here, we demonstrate nonperturbative field distribution mapping in ultrascaled magnetic nanowires with diameters down to 6 nm by scanning nitrogen-vacancy magnetometry. This enables localized, minimally invasive magnetic imaging with sensitivity down to 3 µT Hz-1/2. The imaging reveals the presence of weak magnetic inhomogeneities inside in-plane magnetized nanowires that are largely undetectable with standard metrology and can be related to local fluctuations of the NWs' saturation magnetization. In addition, the strong magnetic field confinement in the nanowires allows for the study of the interaction between the stray magnetic field and the nitrogen-vacancy sensor, thus clarifying the contrasting formation mechanisms for technologically relevant magnetic nanostructures.


Asunto(s)
Diamante , Nanocables , Diamante/química , Campos Magnéticos , Magnetismo/métodos , Nitrógeno/química
2.
Nano Lett ; 15(1): 165-9, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25438091

RESUMEN

Photonic structures in diamond are key to most of its application in quantum technology. Here, we demonstrate tapered nanowaveguides structured directly onto the diamond substrate hosting shallow-implanted nitrogen vacancy (NV) centers. By optimization based on simulations and precise experimental control of the geometry of these pillar-shaped nanowaveguides, we achieve a net photon flux up to ∼ 1.7 × 10(6) s(-1). This presents the brightest monolithic bulk diamond structure based on single NV centers so far. We observe no impact on excited state lifetime and electronic spin dephasing time (T2) due to the nanofabrication process. Possessing such high brightness with low background in addition to preserved spin quality, this geometry can improve the current nanomagnetometry sensitivity ∼ 5 times. In addition, it facilitates a wide range of diamond defects-based magnetometry applications. As a demonstration, we measure the temperature dependency of T1 relaxation time of a single shallow NV center electronic spin. We observe the two-phonon Raman process to be negligible in comparison to the dominant two-phonon Orbach process.

3.
Rev Sci Instrum ; 88(1): 013702, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28147665

RESUMEN

Magnetic sensing and imaging instruments are important tools in biological and material sciences. There is an increasing demand for attaining higher sensitivity and spatial resolution, with implementations using a single qubit offering potential improvements in both directions. In this article we describe a scanning magnetometer based on the nitrogen-vacancy center in diamond as the sensor. By means of a quantum-assisted readout scheme together with advances in photon collection efficiency, our device exhibits an enhancement in signal to noise ratio of close to an order of magnitude compared to the standard fluorescence readout of the nitrogen-vacancy center. This is demonstrated by comparing non-assisted and assisted methods in a T1 relaxation time measurement.

4.
Sci Adv ; 3(8): e1701116, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28819646

RESUMEN

Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA