Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Microbiol ; 206(7): 310, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896324

RESUMEN

The RNA-Seq profiling of Herbaspirillum seropedicae SmR1 wild-type and ntrC mutant was performed under aerobic and three nitrogen conditions (ammonium limitation, ammonium shock, and nitrate shock) to identify the major metabolic pathways modulated by these nitrogen sources and those dependent on NtrC. Under ammonium limitation, H. seropedicae scavenges nitrogen compounds by activating transporter systems and metabolic pathways to utilize different nitrogen sources and by increasing proteolysis, along with genes involved in carbon storage, cell protection, and redox balance, while downregulating those involved in energy metabolism and protein synthesis. Growth on nitrate depends on the narKnirBDHsero_2899nasA operon responding to nitrate and NtrC. Ammonium shock resulted in a higher number of genes differently expressed when compared to nitrate. Our results showed that NtrC activates a network of transcriptional regulators to prepare the cell for nitrogen starvation, and also synchronizes nitrogen metabolism with carbon and redox balance pathways.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Herbaspirillum , Nitratos , Nitrógeno , Herbaspirillum/metabolismo , Herbaspirillum/genética , Nitratos/metabolismo , Nitrógeno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Compuestos de Amonio/metabolismo , Adaptación Fisiológica , Redes y Vías Metabólicas/genética , Carbono/metabolismo
2.
Int J Mol Sci ; 23(15)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35955667

RESUMEN

Gluconacetobacter diazotrophicus has been the focus of several studies aiming to understand the mechanisms behind this endophytic diazotrophic bacterium. The present study is the first global analysis of the early transcriptional response of exponentially growing G. diazotrophicus to iron, an essential cofactor for many enzymes involved in various metabolic pathways. RNA-seq, targeted gene mutagenesis and computational motif discovery tools were used to define the G. diazotrophicusfur regulon. The data analysis showed that genes encoding functions related to iron homeostasis were significantly upregulated in response to iron limitations. Certain genes involved in secondary metabolism were overexpressed under iron-limited conditions. In contrast, it was observed that the expression of genes involved in Fe-S cluster biosynthesis, flagellar biosynthesis and type IV secretion systems were downregulated in an iron-depleted culture medium. Our results support a model that controls transcription in G. diazotrophicus by fur function. The G. diazotrophicusfur protein was able to complement an E. colifur mutant. These results provide new insights into the effects of iron on the metabolism of G. diazotrophicus, as well as demonstrate the essentiality of this micronutrient for the main characteristics of plant growth promotion by G. diazotrophicus.


Asunto(s)
Gluconacetobacter , Hierro , Proteínas Bacterianas/metabolismo , Medios de Cultivo/farmacología , Hierro/metabolismo , Transcriptoma
3.
Emerg Infect Dis ; 27(12): 3124-3127, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34533453

RESUMEN

We performed a large-scale severe acute respiratory syndrome coronavirus 2 screening campaign using 2 PCR-based approaches, coupled with variant genotyping, aiming to provide a safer environment for employees of Federal University in Curitiba, Brazil. We observed the rapid spread of the Gamma variant of concern, which replaced other variants in <3 months.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil/epidemiología , Humanos , Investigación
4.
Appl Microbiol Biotechnol ; 105(19): 7339-7352, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34499201

RESUMEN

Herbaspirillum seropedicae is a ß-proteobacterium that establishes as an endophyte in various plants. These bacteria can consume diverse carbon sources, including hexoses and pentoses like D-xylose. D-xylose catabolic pathways have been described in some microorganisms, but databases of genes involved in these routes are limited. This is of special interest in biotechnology, considering that D-xylose is the second most abundant sugar in nature and some microorganisms, including H. seropedicae, are able to accumulate poly-3-hydroxybutyrate when consuming this pentose as a carbon source. In this work, we present a study of D-xylose catabolic pathways in H. seropedicae strain Z69 using RNA-seq analysis and subsequent analysis of phenotypes determined in targeted mutants in corresponding identified genes. G5B88_22805 gene, designated xylB, encodes a NAD+-dependent D-xylose dehydrogenase. Mutant Z69∆xylB was still able to grow on D-xylose, although at a reduced rate. This appears to be due to the expression of an L-arabinose dehydrogenase, encoded by the araB gene (G5B88_05250), that can use D-xylose as a substrate. According to our results, H. seropedicae Z69 uses non-phosphorylative pathways to catabolize D-xylose. The lower portion of metabolism involves co-expression of two routes: the Weimberg pathway that produces α-ketoglutarate and a novel pathway recently described that synthesizes pyruvate and glycolate. This novel pathway appears to contribute to D-xylose metabolism, since a mutant in the last step, Z69∆mhpD, was able to grow on this pentose only after an extended lag phase (40-50 h). KEY POINTS: • xylB gene (G5B88_22805) encodes a NAD+-dependent D-xylose dehydrogenase. • araB gene (G5B88_05250) encodes a L-arabinose dehydrogenase able to recognize D-xylose. • A novel route involving mhpD gene is preferred for D-xylose catabolism.


Asunto(s)
Biotecnología , Xilosa , Herbaspirillum
5.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073173

RESUMEN

Autoinducer 2 (or AI-2) is one of the molecules used by bacteria to trigger the Quorum Sensing (QS) response, which activates expression of genes involved in a series of alternative mechanisms, when cells reach high population densities (including bioluminescence, motility, biofilm formation, stress resistance, and production of public goods, or pathogenicity factors, among others). Contrary to most autoinducers, AI-2 can induce QS responses in both Gram-negative and Gram-positive bacteria, and has been suggested to constitute a trans-specific system of bacterial communication, capable of affecting even bacteria that cannot produce this autoinducer. In this work, we demonstrate that the ethanologenic Gram-negative bacterium Zymomonas mobilis (a non-AI-2 producer) responds to exogenous AI-2 by modulating expression of genes involved in mechanisms typically associated with QS in other bacteria, such as motility, DNA repair, and nitrogen fixation. Interestingly, the metabolism of AI-2-induced Z. mobilis cells seems to favor ethanol production over biomass accumulation, probably as an adaptation to the high-energy demand of N2 fixation. This opens the possibility of employing AI-2 during the industrial production of second-generation ethanol, as a way to boost N2 fixation by these bacteria, which could reduce costs associated with the use of nitrogen-based fertilizers, without compromising ethanol production in industrial plants.


Asunto(s)
Etanol/metabolismo , Homoserina/análogos & derivados , Lactonas/farmacología , Fijación del Nitrógeno/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Zymomonas/metabolismo , Homoserina/farmacología
6.
BMC Genomics ; 21(1): 134, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039705

RESUMEN

BACKGROUND: Herbaspirillum seropedicae is a diazotrophic bacterium from the ß-proteobacteria class that colonizes endophytically important gramineous species, promotes their growth through phytohormone-dependent stimulation and can express nif genes and fix nitrogen inside plant tissues. Due to these properties this bacterium has great potential as a commercial inoculant for agriculture. The H. seropedicae SmR1 genome is completely sequenced and annotated but despite the availability of diverse structural and functional analysis of this genome, studies involving small non-coding RNAs (sRNAs) has not yet been done. We have conducted computational prediction and RNA-seq analysis to select and confirm the expression of sRNA genes in the H. seropedicae SmR1 genome, in the presence of two nitrogen independent sources and in presence of naringenin, a flavonoid secreted by some plants. RESULTS: This approach resulted in a set of 117 sRNAs distributed in riboswitch, cis-encoded and trans-encoded categories and among them 20 have Rfam homologs. The housekeeping sRNAs tmRNA, ssrS and 4.5S were found and we observed that a large number of sRNAs are more expressed in the nitrate condition rather than the control condition and in the presence of naringenin. Some sRNAs expression were confirmed in vitro and this work contributes to better understand the post transcriptional regulation in this bacterium. CONCLUSIONS: H. seropedicae SmR1 express sRNAs in the presence of two nitrogen sources and/or in the presence of naringenin. The functions of most of these sRNAs remains unknown but their existence in this bacterium confirms the evidence that sRNAs are involved in many different cellular activities to adapt to nutritional and environmental changes.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Herbaspirillum/genética , Nitratos/metabolismo , Fijación del Nitrógeno/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Simulación por Computador , Flavanonas/metabolismo , Flavanonas/farmacología , Herbaspirillum/efectos de los fármacos , Nitratos/farmacología , Riboswitch
7.
Nucleic Acids Res ; 46(8): 3953-3966, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29529262

RESUMEN

Bacteria adjust the composition of their electron transport chain (ETC) to efficiently adapt to oxygen gradients. This involves differential expression of various ETC components to optimize energy generation. In Herbaspirillum seropedicae, reprogramming of gene expression in response to oxygen availability is controlled at the transcriptional level by three Fnr orthologs. Here, we characterised Fnr regulons using a combination of RNA-Seq and ChIP-Seq analysis. We found that Fnr1 and Fnr3 directly regulate discrete groups of promoters (Groups I and II, respectively), and that a third group (Group III) is co-regulated by both transcription factors. Comparison of DNA binding motifs between the three promoter groups suggests Group III promoters are potentially co-activated by Fnr3-Fnr1 heterodimers. Specific interaction between Fnr1 and Fnr3, detected in two-hybrid assays, was dependent on conserved residues in their dimerization interfaces, indicative of heterodimer formation in vivo. The requirements for co-activation of the fnr1 promoter, belonging to Group III, suggest either sequential activation by Fnr3 and Fnr1 homodimers or the involvement of Fnr3-Fnr1 heterodimers. Analysis of Fnr proteins with swapped activation domains provides evidence that co-activation by Fnr1 and Fnr3 at Group III promoters optimises interactions with RNA polymerase to fine-tune transcription in response to prevailing oxygen concentrations.


Asunto(s)
Herbaspirillum/genética , Herbaspirillum/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Inmunoprecipitación de Cromatina , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Modelos Biológicos , Mutación , Oxígeno/metabolismo , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Transcriptoma
8.
Genet Mol Biol ; 43(4): e20200023, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32926069

RESUMEN

Butia eriospatha is an endemic palm species from the Atlantic Rainforest in Brazil, a biodiversity hotspot. This species is currently listed in the IUCN red list as vulnerable and lacks specific plastid markers for population genetics studies. In addition, the evolutionary relationship within the genus Butia is not yet well resolved. Here, we sequenced and characterized the complete plastid genome (plastome) sequence of B. eriospatha. The complete plastome sequence is 154,048 bp in length, with the typical quadripartite structure. This plastome length and genes content is consistent with other six species from tribe Cocoseae. However, the Inverted Repeat (IR) borders show some variation among the analyzed species from this tribe. Species from the Bactridinae (Astrocaryum and Acrocomia) and Elaeidinae (Elaeis) subtribes present the rps19 gene completely duplicated in the IR region. In contrast, all plastomes sequenced from the subtribe Attaleinae (Butia, Cocos, Syagrus) present one complete CDS of rps19 and one partial copy of rps19. The difference in the IR/LSC junctions between Attaleinae and the sister clades Bactridinae + Elaeidinae might be considered an evolutionary signal and the plastome sequence of B. eriopatha may be used in future studies of population genetics and phylogeny.

9.
Planta ; 247(4): 1011-1030, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29340796

RESUMEN

MAIN CONCLUSION: The plastome of macaw palm was sequenced allowing analyses of evolution and molecular markers. Additionally, we demonstrated that more than half of plastid protein-coding genes in Arecaceae underwent positive selection. Macaw palm is a native species from tropical and subtropical Americas. It shows high production of oil per hectare reaching up to 70% of oil content in fruits and an interesting plasticity to grow in different ecosystems. Its domestication and breeding are still in the beginning, which makes the development of molecular markers essential to assess natural populations and germplasm collections. Therefore, we sequenced and characterized in detail the plastome of macaw palm. A total of 221 SSR loci were identified in the plastome of macaw palm. Additionally, eight polymorphism hotspots were characterized at level of subfamily and tribe. Moreover, several events of gain and loss of RNA editing sites were found within the subfamily Arecoideae. Aiming to uncover evolutionary events in Arecaceae, we also analyzed extensively the evolution of plastid genes. The analyses show that highly divergent genes seem to evolve in a species-specific manner, suggesting that gene degeneration events may be occurring within Arecaceae at the level of genus or species. Unexpectedly, we found that more than half of plastid protein-coding genes are under positive selection, including genes for photosynthesis, gene expression machinery and other essential plastid functions. Furthermore, we performed a phylogenomic analysis using whole plastomes of 40 taxa, representing all subfamilies of Arecaceae, which placed the macaw palm within the tribe Cocoseae. Finally, the data showed here are important for genetic studies in macaw palm and provide new insights into the evolution of plastid genes and environmental adaptation in Arecaceae.


Asunto(s)
Arecaceae/genética , Genes de Plantas/genética , Plastidios/genética , Evolución Molecular , Filogenia
10.
Plant Cell Rep ; 37(2): 307-328, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29086003

RESUMEN

KEY MESSAGE: The plastome of Linum usitatissimum was completely sequenced allowing analyses of evolution of genome structure, RNA editing sites, molecular markers, and indicating the position of Linaceae within Malpighiales. Flax (Linum usitatissimum L.) is an economically important crop used as food, feed, and industrial feedstock. It belongs to the Linaceae family, which is noted by high morphological and ecological diversity. Here, we reported the complete sequence of flax plastome, the first species within Linaceae family to have the plastome sequenced, assembled and characterized in detail. The plastome of flax is a circular DNA molecule of 156,721 bp with a typical quadripartite structure including two IRs of 31,990 bp separating the LSC of 81,767 bp and the SSC of 10,974 bp. It shows two expansion events from IRB to LSC and from IRB to SSC, and a contraction event in the IRA-LSC junction, which changed significantly the size and the gene content of LSC, SSC and IRs. We identified 109 unique genes and 2 pseudogenes (rpl23 and ndhF). The plastome lost the conserved introns of clpP gene and the complete sequence of rps16 gene. The clpP, ycf1, and ycf2 genes show high nucleotide and aminoacid divergence, but they still possibly retain the functionality. Moreover, we also identified 176 SSRs, 20 tandem repeats, and 39 dispersed repeats. We predicted in 18 genes a total of 53 RNA editing sites of which 32 were not found before in other species. The phylogenetic inference based on 63 plastid protein-coding genes of 38 taxa supports three major clades within Malpighiales order. One of these clades has flax (Linaceae) sister to Chrysobalanaceae family, differing from earlier studies that included Linaceae into the euphorbioid clade.


Asunto(s)
Lino/genética , Genoma de Plastidios/genética , Linaceae/genética , Plastidios/genética , Edición de ARN , Sitios de Unión/genética , Proteínas de Cloroplastos/genética , ADN de Cloroplastos/química , ADN de Cloroplastos/genética , Evolución Molecular , Genes del Cloroplasto/genética , Linaceae/clasificación , Filogenia , Análisis de Secuencia de ADN
11.
Plant Mol Biol ; 94(6): 625-640, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28674938

RESUMEN

KEY MESSAGE: Herbaspirillum rubrisubalbicans decreases growth of rice. Inoculation of rice with H. rubrisubalbicans increased the ACCO mRNA levels and ethylene production. The H. rubrisubalbicans rice interactions were further characterized by proteomic approach. Herbaspirillum rubrisubalbicans is a well-known growth-promoting rhizobacteria that can also act as a mild phyto-pathogen. During colonisation of rice, RT-qPCR analyses showed that H. rubrisubalbicans up-regulates the methionine recycling pathway as well as phyto-siderophore synthesis genes. mRNA levels of ACC oxidase and ethylene levels also increased in rice roots but inoculation with H. rubrisubalbicans impaired growth of the rice plant. A proteomic approach was used to identify proteins specifically modulated by H. rubrisubalbicans in rice and amongst the differentially expressed proteins a V-ATPase and a 14-3-3 protein were down-regulated. Several proteins of H. rubrisubalbicans were identified, including the type VI secretion system effector Hcp1, suggesting that protein secretion play a role colonisation in rice. Finally, the alkyl hydroperoxide reductase, a primary scavenger of endogenous hydrogen peroxide was also identified. Monitoring the levels of reactive oxygen species in the epiphytic bacteria by flow cytometry revealed that H. rubrisubalbicans is subjected to oxidative stress, suggesting that the alkyl hydroperoxide reductase is an important regulator of redox homeostasis in plant-bacteria interactions.


Asunto(s)
Etilenos/metabolismo , Herbaspirillum/patogenicidad , Oryza/crecimiento & desarrollo , Oryza/microbiología , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Hierro/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
12.
J Clin Lab Anal ; 31(2)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27554451

RESUMEN

BACKGROUND: The glucokinase regulatory protein (GCKR) regulates the activity of the glucokinase (GCK), which plays a key role in glucose homeostasis. Genetic variants in GCK have been associated with diabetes and gestational diabetes (GDM). Due to the relationship between GCKRP and GCK, polymorphisms in GCKR are also candidates for genetic association with GDM. The aim of this study was to evaluate the association between the GCKR rs780094 polymorphism and GDM in a Brazilian population. METHODS: 252 unrelated Euro-Brazilian pregnant women were classified as control (healthy pregnant women, n = 125) and GDM (pregnant women with GDM, n = 127) age-matched groups. Clinical and anthropometric data were obtained from all subjects. The GCKR rs780094 polymorphism was genotyped using fluorescent probes (TaqMan® , code C_2862873_10). RESULTS: Both groups were in Hardy-Weinberg equilibrium. The GCKR rs780094 polymorphism was associated with GDM in codominant and dominant models (P = 0.022 and P = 0.010, respectively). The minor allele (T) frequency for the control group in the study was 38.4% (95% CI: 32-44%), similar to frequencies reported for other Caucasian populations. CONCLUSION: Carriers of the C allele of rs780094 were 1.41 (odds ratio, 95% CI, 0.97-2.03) times more likely to develop GDM.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Diabetes Gestacional/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Adulto , Alelos , Brasil , Diabetes Mellitus Tipo 2/genética , Femenino , Frecuencia de los Genes/genética , Genotipo , Humanos , Embarazo , Factores de Riesgo
13.
Curr Genet ; 62(2): 443-53, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26643654

RESUMEN

The complete plastome sequencing is an efficient option for increasing phylogenetic resolution and evolutionary studies, as well as may greatly facilitate the use of plastid DNA markers in plant population genetic studies. Merostachys and Guadua stand out as the most common and the highest potential utilization bamboos indigenous of Brazil. Here, we sequenced the complete plastome sequences of the Brazilian Guadua chacoensis and Merostachys sp. to perform full plastome phylogeny and characterize the occurrence, type, and distribution of SRRs using 20 Bambuseae species. The determined plastome sequence of Merostachys sp. and G. chacoensis is 136,334 and 135,403 bp in size, respectively, with an identical gene content and typical quadripartite structure consisting of a pair of IRs separated by the LSC and SSC regions. The Maximum Likelihood and Bayesian Inference analyses produced phylogenomic trees identical in topology. These trees supported monophyly of Paleotropical and Neotropical Bamboos clades. The Neotropical bamboos segregated into three well-supported lineages, Chusqueinae, Guaduinae, and Arthrostylidiinae, with the last two forming a well-supported sister relationship. Paleotropical bamboos segregated into two well-supported lineages, Hickeliinae and Bambusinae + Melocanninae. We identified 141.8 cpSSR in Bambuseae plastomes and an inferior value (38.15) for plastome coding sequences. Among them, we identified 16 polymorphic SSR loci, with number of alleles varying from 3 to 10. These 16 polymorphic cpSSR loci in Bambuseae plastome can be assessed for the intraspecific level of polymorphism, leading to innovative highly sensitive phylogeographic and population genetics studies for this tribe.


Asunto(s)
Genoma de Plastidios , Filogenia , Plastidios/genética , Poaceae/genética , Sitios Genéticos , Análisis de Secuencia de ADN
15.
BMC Microbiol ; 15: 95, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25947294

RESUMEN

BACKGROUND: Orthologous proteins of the Crp/Fnr family have been previously implicated in controlling expression and/or activity of the NifA transcriptional activator in some diazotrophs. This study aimed to address the role of three Fnr-like proteins from H. seropedicae SmR1 in controlling NifA activity and consequent NifA-mediated transcription activation. RESULTS: The activity of NifA-dependent transcriptional fusions (nifA::lacZ and nifB::lacZ) was analysed in a series of H. seropedicae fnr deletion mutant backgrounds. We found that combined deletions in both the fnr1 and fnr3 genes lead to higher expression of both the nifA and nifB genes and also an increased level of nifH transcripts. Expression profiles of nifB under different oxygen concentrations, together with oxygen consumption measurements suggest that the triple fnr mutant has higher respiratory activity when compared to the wild type, which we believe to be responsible for greater stability of the oxygen sensitive NifA protein. This conclusion was further substantiated by measuring the levels of NifA protein and its activity in fnr deletion strains in comparison with the wild-type. CONCLUSIONS: Fnr proteins are indirectly involved in controlling the activity of NifA in H. seropedicae, probably as a consequence of their influence on respiratory activity in relation to oxygen availability. Additionally we can suggest that there is some redundancy in the physiological function of the three Fnr paralogs in this organism, since altered respiration and effects on NifA activity are only observed in deletion strains lacking both fnr1 and fnr3.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Herbaspirillum/genética , Herbaspirillum/metabolismo , Oxígeno/metabolismo , Factores de Transcripción/deficiencia , Activación Transcripcional , Proteínas Hierro-Azufre/deficiencia , Factores de Transcripción/metabolismo
16.
Microb Cell Fact ; 13: 171, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25510188

RESUMEN

BACKGROUND: Metagenomics is a useful tool in the search for new lipases that might have characteristics that make them suitable for application in biocatalysis. This paper reports the cloning, co-expression, purification and characterization of a new lipase, denominated LipG9, and its specific foldase, LifG9, from a metagenomic library derived from a fat-contaminated soil. RESULTS: Within the metagenomic library, the gene lipg9 was cloned jointly with the gene of the foldase, lifg9. LipG9 and LifG9 have 96% and 84% identity, respectively, with the corresponding proteins of Aeromonas veronii B565. LipG9 and LifG9 were co-expressed, both in N-truncated form, in Escherichia coli BL21(DE3), using the vectors pET28a(+) and pT7-7, respectively, and then purified by affinity chromatography using a Ni(2+) column (HiTrap Chelating HP). The purified enzyme eluted from the column complexed with its foldase. The molecular masses of the N-truncated proteins were 32 kDa for LipG9, including the N-terminal His-tag with 6 residues, and 23 kDa for LifG9, which did not have a His-tag. The biochemical and kinetic characteristics of the purified lipase-foldase preparation were investigated. This preparation was active and stable over a wide range of pH values (6.5-9.5) and temperatures (10-40°C), with the highest specific activity, of 1500 U mg(-1), being obtained at pH 7.5 at 30°C. It also had high specific activities against tributyrin, tricaprylin and triolein, with values of 1852, 1566 and 817 U mg(-1), respectively. A phylogenetic analysis placed LipG9 in the lipase subfamily I.1. A comparison of the sequence of LipG9 with those of other bacterial lipases in the Protein Data Bank showed that LipG9 contains not only the classic catalytic triad (Ser(103), Asp(250), His(272)), with the catalytic Ser occurring within a conserved pentapeptide, Gly-His-Ser-His-Gly, but also a conserved disulfide bridge and a conserved calcium binding site. The homology-modeled structure presents a canonical α/ß hydrolase folding type I. CONCLUSIONS: This paper is the first to report the successful co-expression of a lipase and its associated foldase from a metagenomic library. The high activity and stability of Lip-LifG9 suggest that it has a good potential for use in biocatalysis.


Asunto(s)
Aeromonas , Proteínas Bacterianas , Expresión Génica , Metagenoma , Aeromonas/enzimología , Aeromonas/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca de Genes , Lipasa , Metagenómica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
17.
Mar Pollut Bull ; 203: 116426, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692005

RESUMEN

Aquatic environments are subject to threats from multiple human activities, particularly through the release of untreated sanitary sewage into the coastal environments. These effluents contain a large group of natural or synthetic compounds referred to as emerging contaminants. Monitoring the types and quantities of toxic substances in the environment, especially complex mixtures, is an exhausting and challenging task. Integrative effect-based tools, such as biomarkers, are recommended for environmental quality monitoring programs. In this study, fish Poecilia vivipara were exposed for 24 and 96 h to raw untreated sewage diluted 33 % (v/v) in order to identify hepatic genes to be used as molecular biomarkers. Through a de novo hepatic transcriptome assembly, using Illumina MiSeq, 54,285 sequences were assembled creating a reference transcriptome for this guppy species. Transcripts involved in biotransformation systems, antioxidant defenses, ABC transporters, nuclear and xenobiotic receptors were identified and evaluated by qPCR. Sanitary sewage induced transcriptional changes in AhR, PXR, CYP2K1, CYP3A30, NQO1, UGT1A1, GSTa3, GSTmu, ST1C1, SOD, ABCC1 and SOX9 genes from liver of fish, particularly after 96 h of exposure. Changes in hepatic enzyme activities were also observed. The enzymes showed differences in fish exposed to both periods, while in the gills there was a prevalence of significant results after 96 h. The observed differences were associated to gender and/or to sewage exposure. The obtained results support the use of P. vivipara as sentinel and model organism for ecotoxicological studies and evidence the importance of understanding the differential responses associated to gender.


Asunto(s)
Antioxidantes , Monitoreo del Ambiente , Hígado , Poecilia , Aguas del Alcantarillado , Transcriptoma , Contaminantes Químicos del Agua , Animales , Hígado/metabolismo , Contaminantes Químicos del Agua/análisis , Antioxidantes/metabolismo , Masculino , Femenino
18.
Immunol Lett ; : 106903, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069096

RESUMEN

OBJECTIVE: To estimate original wild-type BNT162b2 effectiveness against symptomatic Omicron infection among children 5-11 years of age. METHODS: This prospective test-negative, case-control study was conducted in Toledo, southern Brazil, from June 2022 to July 2023. Patients were included if they were aged 5-11 years, sought care for acute respiratory symptoms in the public health system, and were tested for SARS-CoV-2 using reverse transcription polymerase chain reaction. In the primary analysis, we determined the effectiveness of two doses of original wild-type BNT162b2 against symptomatic COVID-19. The reference exposure group was the unvaccinated. RESULTS: A total of 757 children were enrolled; of these, 461 (25 cases; 436 controls) were included in the primary analysis. Mean age was 7.4 years, 49.7% were female, 34.6% were obese, and 14.1% had chronic pulmonary disease. Omicron accounted for 100% of all identified SARS-CoV-2 variants with BA.5, BQ.1, and XBB.1 accounting for 35.7%, 21.4% and 21.4%, respectively. The adjusted estimate of two-dose vaccine effectiveness against symptomatic Omicron was 3.1% (95% CI, -133.7% to 61.8%) after a median time between the second dose and the beginning of COVID-19 symptoms of 192.5 days (interquartile range, 99 to 242 days). CONCLUSION: In this study with children 5-11 years of age, a two dose-schedule of original wild-type BNT162b2 was not associated with a significant protection against symptomatic Omicron infection after a median time between the second dose and the beginning of COVID-19 symptoms of 192 days, although the study may have been underpowered to detect a clinically important difference. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov number, NCT05403307 (https://classic. CLINICALTRIALS: gov/ct2/show/NCT05403307).

19.
Biochemistry ; 52(15): 2683-93, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23517273

RESUMEN

PII proteins are important regulators of nitrogen metabolism in a wide variety of organisms: the binding of the allosteric effectors ATP, ADP, and 2-oxoglutarate (2-OG) to PII proteins affects their ability to interact with target proteins. We modeled the simultaneous binding of ATP, ADP, and 2-OG to one PII protein, namely GlnB of Escherichia coli, using a modeling approach that allows the prediction of the proportions of individual binding states. Four models with different binding rules were compared. We selected one of these models (that assumes that the binding of the first nucleotide to GlnB makes it harder for subsequent nucleotides to bind) and used it to explore how physiological concentrations of ATP, ADP, and 2-OG would affect the proportions of those states of GlnB that interact with the target proteins ATase and NtrB. Our simulations indicate that GlnB can, as suggested by previous researchers, act as a sensor of both 2-OG and the ATP:ADP ratio. We conclude that our modeling approach will be an important tool in future studies concerning the PII binding states and their interactions with target proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Teóricos , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ligandos , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo
20.
J Proteome Res ; 12(3): 1142-50, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23331092

RESUMEN

Bacterial endophytes of the genus Herbaspirillum colonize sugar cane and can promote plant growth. The molecular mechanisms that mediate plant- H. seropedicae interaction are poorly understood. In this work, we used 2D-PAGE electrophoresis to identify H. seropedicae proteins differentially expressed at the log growth phase in the presence of sugar cane extract. The differentially expressed proteins were validated by RT qPCR. A total of 16 differential spots (1 exclusively expressed, 7 absent, 5 up- and 3 down-regulated) in the presence of 5% sugar cane extract were identified; thus the host extract is able to induce and repress specific genes of H. seropedicae. The differentially expressed proteins suggest that exposure to sugar cane extract induced metabolic changes and adaptations in H. seropedicae presumably in preparation to establish interaction with the plant.


Asunto(s)
Proteínas Bacterianas/metabolismo , Herbaspirillum/metabolismo , Extractos Vegetales/administración & dosificación , Proteómica , Saccharum/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Electroforesis en Gel Bidimensional , Datos de Secuencia Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA