Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38763170

RESUMEN

BACKGROUND: Despite impaired humoral response in patients treated with immunosuppressants (ISPs), recent studies found similar severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection compared to controls. One potential explanation is the rapid generation of humoral response on infection, but evidence is lacking. OBJECTIVES: We investigated the longitudinal dynamics of the SARS-CoV-2 antibody repertoire after SARS-CoV-2 delta and omicron breakthrough infection in patients with immune-mediated inflammatory diseases (IMIDs) receiving ISP therapy and controls. METHODS: As a prospective substudy of the national Target-to-B! (T2B!) consortium, we included IMID patients receiving ISPs therapy and controls who reported SARS-CoV-2 breakthrough infection between July 1, 2021, and April 1, 2022. To get an impression of the dynamics of the antibody repertoire, 3 antibody titers of wild-type RBD, wild-type S, and omicron RBD were measured at 4 time points after SARS-CoV-2 breakthrough infection. RESULTS: We included 302 IMID patients receiving ISPs and 178 controls. Antibody titers increased up to 28 days after breakthrough infection in both groups. However, in IMID patients receiving therapy with anti-CD20 and sphingosine-1 phosphate receptor modulators, antibody titers were considerably lower compared to controls. In the anti-TNF group, we observed slightly lower antibody titers in the early stages and a faster decline of antibodies after infection compared to controls. Breakthrough infections were mostly mild, and hospitalization was required in less than 1% of cases. CONCLUSIONS: Most ISPs do not influence the dynamics of the SARS-CoV-2 antibody repertoire and exhibit a rapid recall response with cross-reactive antibody clones toward new virus variants. However, in patients treated with anti-CD20 therapy or sphingosine-1 phosphate receptor modulators, the dynamics were greatly impaired, and to a lesser extent in those who received anti-TNF. Nevertheless, only a few severe breakthrough cases were reported.

2.
J Autoimmun ; 135: 102984, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621174

RESUMEN

For patients with immune-mediated inflammatory diseases (IMIDs), concerns exist about increased disease activity after vaccination. We aimed to assess changes in disease activity after SARS-CoV-2 vaccination in patients with IMIDs, and determine risk factors for increased disease activity. In this substudy of a prospective observational cohort study (Target-to-B!), we included patients with IMIDs who received a SARS-CoV-2 vaccine. Patients reported changes in disease activity on a five-point Likert scale every 60 days for up to twelve months after first vaccination. In case of self-reported increased activity, hospital records were screened whether the treating physician reported increased activity, and for potential intensification of immunosuppressive (ISP) treatment. Mixed models were used to study determinants for self-reported increased disease activity. In total, 2111 patients were included for analysis after primary immunization (mean age 49.7 years [SD 13.7], 1329/2111 (63.0%) female), from which 1266 patients for analysis after first additional vaccination. Increased disease activity at 60 days after start of primary immunization was reported by 223/2111 (10.6%). In 96/223 (43.0%) the increase was confirmed by the treating physician and in 36/223 (16.1%) ISP treatment was intensified. Increased disease activity at seven to 60 days after additional vaccination, was reported by 139/1266 (11.0%). Vaccinations were not temporally associated with self-reported increased disease activity. Conversely, increased disease activity before first vaccination, neuromuscular disease, and multiple sclerosis were associated. Altogether, self-reported increased disease activity after vaccination against SARS-CoV-2 was recorded in a minority of patients and was generally mild. Moreover, multivariate analyses suggest that disease related factors, but not vaccinations are the major determinants for self-reported increased disease activity.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Femenino , Persona de Mediana Edad , Masculino , SARS-CoV-2 , Agentes Inmunomoduladores , Estudios Prospectivos , Inmunosupresores
3.
BMC Infect Dis ; 23(1): 332, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198536

RESUMEN

BACKGROUND: Patients with immune-mediated inflammatory diseases (IMIDs) on immunosuppressants (ISPs) may have impaired long-term humoral immune responses and increased disease activity after SARS-CoV-2 infection. We aimed to investigate long-term humoral immune responses against SARS-CoV-2 and increased disease activity after a primary SARS-CoV-2 infection in unvaccinated IMID patients on ISPs. METHODS: IMID patients on active treatment with ISPs and controls (i.e. IMID patients not on ISP and healthy controls) with a confirmed SARS-CoV-2 infection before first vaccination were included from an ongoing prospective cohort study (T2B! study). Clinical data on infections and increased disease activity were registered using electronic surveys and health records. A serum sample was collected before first vaccination to measure SARS-CoV-2 anti-receptor-binding domain (RBD) antibodies. RESULTS: In total, 193 IMID patients on ISP and 113 controls were included. Serum samples from 185 participants were available, with a median time of 173 days between infection and sample collection. The rate of seropositive IMID patients on ISPs was 78% compared to 100% in controls (p < 0.001). Seropositivity rates were lowest in patients on anti-CD20 (40.0%) and anti-tumor necrosis factor (TNF) agents (60.5%), as compared to other ISPs (p < 0.001 and p < 0.001, respectively). Increased disease activity after infection was reported by 68 of 260 patients (26.2%; 95% CI 21.2-31.8%), leading to ISP intensification in 6 out of these 68 patients (8.8%). CONCLUSION: IMID patients using ISPs showed reduced long-term humoral immune responses after primary SARS-CoV-2 infection, which was mainly attributed to treatment with anti-CD20 and anti-TNF agents. Increased disease activity after SARS-CoV-2 infection was reported commonly, but was mostly mild. TRIAL REGISTRATION: NL74974.018.20, Trial ID: NL8900. Registered on 9 September 2020.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Inmunidad Humoral , Estudios Prospectivos , Inhibidores del Factor de Necrosis Tumoral , Inmunosupresores/uso terapéutico , Factor de Necrosis Tumoral alfa , Vacunación , Anticuerpos Antivirales
4.
J Infect Dis ; 225(10): 1755-1764, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34134138

RESUMEN

BACKGROUND: Measles outbreaks are reported worldwide and pose a serious threat, especially to young unvaccinated infants. Early measles vaccination given to infants under 12 months of age can induce protective antibody levels, but the long-term antibody functionalities are unknown. METHODS: Measles-specific antibody functionality was tested using a systems serology approach for children who received an early measles vaccination at 6-8 or 9-12 months, followed by a regular dose at 14 months of age, and children who only received the vaccination at 14 months. Antibody functionalities comprised complement deposition, cellular cytotoxicity, and neutrophil and cellular phagocytosis. We used Pearson's r correlations between all effector functions to investigate the coordination of the response. RESULTS: Children receiving early measles vaccination at 6-8 or 9-12 months of age show polyfunctional antibody responses. Despite significant lower levels of antibodies in these early-vaccinated children, Fc effector functions were comparable with regular-timed vaccinees at 14 months. However, 3-year follow-up revealed significant decreased polyfunctionality in children who received a first vaccination at 6-8 months of age, but not in children who received the early vaccination at 9-12 months. CONCLUSIONS: Antibodies elicited in early-vaccinated children are equally polyfunctional to those elicited from children who received vaccination at 14 months. However, these antibody functionalities decay more rapidly than those induced later in life, which may lead to suboptimal, long-term protection.


Asunto(s)
Formación de Anticuerpos , Sarampión , Anticuerpos Antivirales , Niño , Humanos , Lactante , Sarampión/epidemiología , Vacuna Antisarampión , Virus del Sarampión , Vacunación
5.
J Infect Dis ; 221(3): 474-482, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31560392

RESUMEN

BACKGROUND: The re-emergence of mumps among vaccinated young adults has become a global issue. Besides waning of antibody responses, suboptimal induction of T-cell responses may reduce protection. In a recent study, we observed a dominant polyfunctional CD8+ T-cell response after natural mumps virus (MuV) infection that was not present after vaccination. Unraveling the MuV epitope repertoire can provide insight in the specificity, functionality, and breadth of the T-cell response against MuV. METHODS: Peptides were eluted from human leukocyte antigen (HLA) class I molecules of MuV-infected cells and characterized by advanced mass spectrometry. Selected identified MuV peptides were tested for in vitro and ex vivo immunogenicity. RESULTS: In this study, we identified a broad landscape of 83 CD8+ T-cell epitopes of MuV, 41 of which were confirmed based on synthetic peptide standards. For 6 epitopes, we showed induction of an HLA-A*02-restriced CD8+ T-cell response. Moreover, robust T-cell responses against 5 selected MuV epitopes could be detected in all tested mumps patients using peptide/HLA-A*02:01 dextramers. CONCLUSIONS: The identified CD8+ T-cell epitopes will help to further characterize MuV-specific T-cell immunity after natural MuV infection or vaccination. These MuV epitopes may provide clues for a better understanding of, and possibly for preventing, mumps vaccine failure.We identified for the first time 41 mumps virus (MuV)-specific HLA-A*02 epitopes. For 6 epitopes, CD8+ T-cell responses were confirmed in T cells derived from several mumps cases, and MuV-specific CD8+ T cells could be identified by peptide/dextramer staining.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Virus de la Parotiditis/inmunología , Paperas/inmunología , Espectrometría de Masas en Tándem/métodos , Células Cultivadas , Cromatografía de Fase Inversa/métodos , Epítopos de Linfocito T/química , Genotipo , Antígeno HLA-A2/química , Antígeno HLA-A2/inmunología , Humanos , Interferón gamma/biosíntesis , Paperas/patología , Paperas/virología , Virus de la Parotiditis/genética , Péptidos/química , Péptidos/inmunología , Adulto Joven
6.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626672

RESUMEN

Mumps outbreaks among vaccinated young adults stress the need for a better understanding of mumps virus (MuV)-induced immunity. Antibody responses to MuV are well characterized, but studies on T cell responses are limited. We recently isolated a MuV-specific CD4+ T cell clone by stimulating peripheral blood mononuclear cells (PBMCs) from a mumps case with the viral nucleoprotein (MuV-N). In this study, we further explored the identity and relevance of the epitope recognized by the CD4+ T cell clone and ex vivo by T cells in a cohort of mumps cases. Using a two-dimensional matrix peptide pool of 15-mer peptides covering the complete MuV-N, we identified the epitope recognized by the T cell clone as MuV-N110-124 GTYRLIPNARANLTA, present in a well-conserved region of the viral protein. Upon peptide-specific stimulation, the T cell clone expressed the activation marker CD137 and produced gamma interferon, tumor necrosis factor, and interleukin-10 in a HLA-DR4-restricted manner. Moreover, the CD4+ T cells exerted a cytotoxic phenotype and specifically killed cells presenting MuV-N110-124 Furthermore, the identified peptide is widely applicable to the general population since it is predicted to bind various common HLA-DR molecules, and epitope-specific CD4+ T cells displaying cytotoxic/Th1-type properties were found in all tested mumps cases expressing different HLA-DR alleles. This first broadly recognized human MuV-specific CD4+ T cell epitope could provide a useful tool to detect and evaluate virus-specific T cell responses upon MuV infection or following vaccination.IMPORTANCE Recent outbreaks of mumps among vaccinated young adults have been reported worldwide. Humoral responses against mumps virus (MuV) are well characterized, although no correlate of protection has been elucidated, stressing the need to better understand cellular MuV-specific immunity. In this study, we identified the first MuV T cell epitope, which is derived from the viral nucleoprotein (MuV-N) and was recognized by a cytotoxic/Th1 CD4+ T cell clone that was isolated from a mumps case. Moreover, the epitope was predicted to bind a broad variety of common HLA-DRB1 alleles, which was confirmed by the epitope-specific cytotoxic/Th1 CD4+ T cell responses observed in multiple mumps cases with various HLA-DRB1 genotypes. The identified epitope is completely conserved among various mumps strains. These findings qualify this promiscuous MuV T cell epitope as a useful tool for further in-depth exploration of MuV-specific T cell immunity after natural mumps virus infection or induced by vaccination.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Virus de la Parotiditis/inmunología , Paperas/inmunología , Nucleoproteínas/inmunología , Antígenos HLA-DR/inmunología , Humanos , Interferón gamma/inmunología , Leucocitos Mononucleares/inmunología
7.
J Infect Dis ; 220(4): 594-602, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30972418

RESUMEN

BACKGROUND: The majority of infants will not be protected by maternal antibodies until their first measles vaccination, between 12 and 15 months of age. This provides incentive to reduce the age at measles vaccination, but immunological consequences are insufficiently understood, and long-term effects are largely unknown. METHODS: A total of 79 infants who received early measles vaccination between 6 and 12 months age and a second dose at 14 months of age were compared to 44 children in a control group who received 1 dose at 14 months of age. Measles virus-specific neutralizing antibody concentrations and avidity were determined up to 4 years of age. RESULTS: Infants who first received measles vaccination before 12 months of age had a long-term decrease in the concentration and avidity of measles virus-specific neutralizing antibodies, compared with infants in the control group. For 11.1% of children with a first dose before 9 months of age, antibody levels at 4 years of age had dropped below the cutoff for clinical protection. CONCLUSIONS: Early measles vaccination provides immediate protection in the majority of infants but yields a long-term decrease in neutralizing antibody responses, compared to vaccination at a later age. Additional vaccination at 14 months of age does not improve this. Over the long term, this may result in an increasing number of children susceptible to measles.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Brotes de Enfermedades , Vacuna Antisarampión/administración & dosificación , Virus del Sarampión/inmunología , Sarampión/prevención & control , Vacunación , Formación de Anticuerpos , Femenino , Humanos , Lactante , Masculino , Sarampión/epidemiología , Sarampión/virología , Países Bajos/epidemiología , Factores de Tiempo
8.
Proc Natl Acad Sci U S A ; 112(34): 10768-73, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261308

RESUMEN

Th17 responses are critical to a variety of human autoimmune diseases, and therapeutic targeting with monoclonal antibodies against IL-17 and IL-23 has shown considerable promise. Here, we report data to support selective bromodomain blockade of the transcriptional coactivators CBP (CREB binding protein) and p300 as an alternative approach to inhibit human Th17 responses. We show that CBP30 has marked molecular specificity for the bromodomains of CBP and p300, compared with 43 other bromodomains. In unbiased cellular testing on a diverse panel of cultured primary human cells, CBP30 reduced immune cell production of IL-17A and other proinflammatory cytokines. CBP30 also inhibited IL-17A secretion by Th17 cells from healthy donors and patients with ankylosing spondylitis and psoriatic arthritis. Transcriptional profiling of human T cells after CBP30 treatment showed a much more restricted effect on gene expression than that observed with the pan-BET (bromo and extraterminal domain protein family) bromodomain inhibitor JQ1. This selective targeting of the CBP/p300 bromodomain by CBP30 will potentially lead to fewer side effects than with the broadly acting epigenetic inhibitors currently in clinical trials.


Asunto(s)
Bencimidazoles/farmacología , Inmunosupresores/farmacología , Interleucina-17/metabolismo , Isoxazoles/farmacología , Células Th17/efectos de los fármacos , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Adulto , Anciano , Artritis Psoriásica/metabolismo , Artritis Psoriásica/patología , Azepinas/farmacología , Bencimidazoles/química , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Calorimetría , Células Cultivadas , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunosupresores/química , Interleucina-17/biosíntesis , Interleucina-17/genética , Isoxazoles/química , Cinética , Masculino , Persona de Mediana Edad , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Estructura Terciaria de Proteína/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Espondilitis Anquilosante/metabolismo , Espondilitis Anquilosante/patología , Relación Estructura-Actividad , Células Th17/inmunología , Triazoles/farmacología
9.
J Allergy Clin Immunol ; 135(4): 1053-1060, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25258142

RESUMEN

BACKGROUND: B cells mediate humoral immunity against pathogens but also direct CD4(+) T-cell responses. Recent plasticity studies in mice have challenged the concept of strict fate commitment during CD4(+) T-cell differentiation into distinct subsets. OBJECTIVE: We sought to elucidate the contribution of human antigen-primed B cells in CD4(+) T-cell responses that support humoral immunity. METHODS: CD4(+) T-cell differentiation by primary human B cells was investigated in in vitro cocultures by using tetanus toxoid and Salmonella species as antigen models. T-cell differentiation was assessed by using intracellular cytokines and subset-specific transcription factors and markers. IgM and IgG formation was analyzed by means of ELISA. RESULTS: Human B cells, but not dendritic cells, induce prominent and stable coexpression of TH1 and follicular helper T (TFH) cell characteristics during priming and on antigen recall. TH1/TFH cells coexpress the TH1 and TFH effector cytokines IFN-γ and IL-21 and the TFH marker CXCR5, demonstrating that the coexpressed TH1 and TFH subset-specifying transcription factors T-box transcription factor (T-bet) and B cell lymphoma 6 are both functionally active. B cell-derived IL-6 and IL-12 controlled respective expression of IL-21 and IFN-γ, with IL-21 being key for humoral immunity. CONCLUSION: Human B cells exploit CD4(+) T-cell plasticity to create flexibility in the effector T-cell response. Induction of a T-cell subset coexpressing IL-21 and IFN-γ might combine IL-21-mediated T-cell aid for antibody production while maintaining TH1 cytokine expression to support other cellular immune defenses.


Asunto(s)
Formación de Anticuerpos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Regulación de la Expresión Génica , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Transcriptoma , Diferenciación Celular , Humanos , Memoria Inmunológica , Inmunofenotipificación , Interferón gamma/metabolismo , Interleucinas/metabolismo , Fenotipo , Subgrupos de Linfocitos T/citología
11.
iScience ; 27(5): 109771, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38711444

RESUMEN

Host and microbiome intricately interact in the ecosystem of the human digestive tract, playing a crucial role in our health. These interactions can initiate immune responses in the epithelial cells, which, in turn, activate downstream responses in other immune cells. Here, we used a CaCo-2 and a human intestinal enteroid (HIE) model to explore epithelial responses to both commensal and pathogenic bacteria, individually and combined. CaCo-2 cells were co-cultured with peripheral blood mononuclear cells, revealing downstream activation of immune cells. While both systems showed comparable cytokine profiles, they differed in their responses to the different bacteria, with the organoid system being more representative of responses observed in humans. We provide evidence of the pro-inflammatory responses associated with these bacteria. These models contribute to a deeper understanding of the interactions between the microbiota, intestinal epithelium, and immune cells in the gut, promoting advances in the field of host-microbe interactions.

12.
Sci Rep ; 14(1): 5090, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429462

RESUMEN

The SARS-CoV-2 pandemic has emphasized the need to explore how variations in the immune system relate to the severity of the disease. This study aimed to explore inter-individual variation in response to SARS-CoV-2 infection by comparing T cell, B cell, and innate cell immune subsets among primary infected children and adults (i.e., those who had never experienced SARS-CoV-2 infection nor received vaccination previously), with varying disease severity after infection. We also examined immune subset kinetics in convalescent individuals compared to those with persistent infection to identify possible markers of immune dysfunction. Distinct immune subset differences were observed between infected adults and children, as well as among adult cases with mild, moderate, and severe disease. IgM memory B cells were absent in moderate and severe cases whereas frequencies of B cells with a lack of surface immunoglobulin expression were significantly higher in severe cases. Interestingly, these immune subsets remained stable during recovery implying that these subsets could be associated with underlying baseline immune variation. Our results offer insights into the potential immune markers associated with severe COVID-19 and provide a foundation for future research in this area.


Asunto(s)
COVID-19 , Adulto , Niño , Humanos , SARS-CoV-2 , Linfocitos B , Cinética , Gravedad del Paciente
13.
Front Immunol ; 15: 1392477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774878

RESUMEN

Introduction: Accumulating evidence indicates the importance of T cell immunity in vaccination-induced protection against severe COVID-19 disease, especially against SARS-CoV-2 Variants-of-Concern (VOCs) that more readily escape from recognition by neutralizing antibodies. However, there is limited knowledge on the T cell responses across different age groups and the impact of CMV status after primary and booster vaccination with different vaccine combinations. Moreover, it remains unclear whether age has an effect on the ability of T cells to cross-react against VOCs. Methods: Therefore, we interrogated the Spike-specific T cell responses in healthy adults of the Dutch population across different ages, whom received different vaccine types for the primary series and/or booster vaccination, using IFNÉ£ ELISpot. Cells were stimulated with overlapping peptide pools of the ancestral Spike protein and different VOCs. Results: Robust Spike-specific T cell responses were detected in the vast majority of participants upon the primary vaccination series, regardless of the vaccine type (i.e. BNT162b2, mRNA-1273, ChAdOx1 nCoV-19, or Ad26.COV2.S). Clearly, in the 70+ age group, responses were overall lower and showed more variation compared to younger age groups. Only in CMV-seropositive older adults (>70y) there was a significant inverse relation of age with T cell responses. Although T cell responses increased in all age groups after booster vaccination, Spike-specific T cell frequencies remained lower in the 70+ age group. Regardless of age or CMV status, primary mRNA-1273 vaccination followed by BNT162b2 booster vaccination showed limited booster effect compared to the BNT162b2/BNT162b2 or BNT162b2/mRNA-1273 primary-booster regimen. A modest reduction in cross-reactivity to the Alpha, Delta and Omicron BA.1, but not the Beta or Gamma variant, was observed after primary vaccination. Discussion: Together, this study shows that age, CMV status, but also the primary-booster vaccination regimen influence the height of the vaccination-induced Spike-specific T cell response, but did not impact the VOC cross-reactivity.


Asunto(s)
COVID-19 , Reacciones Cruzadas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Linfocitos T , Humanos , Reacciones Cruzadas/inmunología , SARS-CoV-2/inmunología , Persona de Mediana Edad , Adulto , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Anciano , Masculino , Linfocitos T/inmunología , Femenino , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Edad , Adulto Joven , Vacunas contra la COVID-19/inmunología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/prevención & control , Inmunización Secundaria , Citomegalovirus/inmunología , Vacuna BNT162/inmunología , Vacunación , Vacuna nCoV-2019 mRNA-1273/inmunología , ChAdOx1 nCoV-19/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anciano de 80 o más Años
14.
Vaccine ; 42(5): 1145-1153, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262809

RESUMEN

OBJECTIVES: To evaluate immunogenicity, effectiveness and safety of COVID-19 vaccination in patients with pediatric autoimmune inflammatory rheumatic disease (pedAIIRD). METHODS: A prospective cohort study was performed at the pediatric rheumatology department of the Wilhelmina Children's Hospital in Utrecht, the Netherlands. Vaccination dates, COVID-19 cases and vaccine-related adverse events (AEs) were registered for all pedAIIRD patients during regular clinic visits from March 2021 - August 2022. SARS-CoV-2 IgG antibody levels and T-cell responses were measured from serum samples after vaccination, and clinical and drug therapy data were collected from electronic medical records. Rate of COVID-19 disease was compared between vaccinated and unvaccinated patients in a time-varying Cox regression analysis. RESULTS: A total of 157 patients were included in this study and 88 % had juvenile idiopathic arthritis (JIA). One hundred thirty-seven patients were fully vaccinated, of which 47 % used biological agents at the time of vaccination, and 20 patients were unvaccinated. Geometric mean concentrations (GMCs) of post-vaccine antibody levels against SARS-CoV-2 were above the threshold for positivity in patients who did and did not use biological agents at the time of vaccination, although biological users demonstrated significantly lower antibody levels (adjusted GMC ratio: 0.38, 95 % CI: 0.21 - 0.70). T-cell responses were adequate in all but two patients (9 %). The adjusted rate of reported COVID-19 was significantly lower for fully vaccinated patients compared to non-vaccinated patients (HR: 0.53, 95 % CI: 0.29 - 0.97). JIA disease activity scores were not significantly different after vaccination, and no serious AEs were reported. CONCLUSIONS: COVID-19 mRNA vaccines were immunogenic (both cellular and humoral), effective and safe in a large cohort of pedAIIRD patients despite their use of immunosuppressive medication.


Asunto(s)
Artritis Juvenil , Vacunas contra la COVID-19 , COVID-19 , Niño , Humanos , Anticuerpos Antivirales , Artritis Juvenil/complicaciones , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Inmunogenicidad Vacunal , Estudios Prospectivos , Enfermedades Reumáticas , ARN Mensajero , SARS-CoV-2 , Vacunación
15.
Blood ; 118(23): 6107-14, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21926348

RESUMEN

IL-17-producing CD4(+) T helper (Th17) cells are important for immunity against extracellular pathogens and in autoimmune diseases. The factors that drive Th17 development in human remain a matter of debate. Here we show that, compared with classic CD28 costimulation, alternative costimulation via the CD5 or CD6 lymphocyte receptors forms a superior pathway for human Th17-priming. In the presence of the Th17-promoting cytokines IL-1ß, IL-6, IL-23, and transforming growth factor-ß (TGF-ß), CD5 costimulation induces more Th17 cells that produce higher amounts of IL-17, which is preceded by prolonged activation of signal transducer and activator of transcription 3 (STAT3), a key regulator in Th17 differentiation, and enhanced levels of the IL-17-associated transcription factor retinoid-related orphan receptor-γt (ROR-γt). Strikingly, these Th17-promoting signals critically depend on CD5-induced elevation of IL-23 receptor (IL-23R) expression. The present data favor the novel concept that alternative costimulation via CD5, rather than classic costimulation via CD28, primes naive T cells for stable Th17 development through promoting the expression of IL-23R.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Antígenos CD5/inmunología , Receptores de Interleucina/inmunología , Células Th17/inmunología , Adulto , Antígenos CD28/inmunología , Antígenos CD28/metabolismo , Complejo CD3/inmunología , Complejo CD3/metabolismo , Linfocitos T CD4-Positivos/citología , Antígenos CD5/metabolismo , Diferenciación Celular/inmunología , Expresión Génica/inmunología , Humanos , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-17/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Interleucina/genética , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/inmunología , Células Th17/citología , Transcripción Genética/inmunología
16.
iScience ; 26(1): 105741, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36590159

RESUMEN

To investigate B-cell differentiation and maturation occurring in the germinal center (GC) using in vitro culture systems, key factors and interactions of the GC reaction need to be accurately simulated. This study aims at improving in vitro GC simulation using 3D culture techniques. Human B-cells were incorporated into PEG-4MAL hydrogels, to create a synthetic extracellular matrix, supported by CD40L cells, human tonsil-derived lymphoid stromal cells, and cytokines. The differentiation and antibody production of CD19+B-cells was best supported in a 5.0%-PEG-4MAL, 2.0 mM-RGD-peptide composition. The 3D culture significantly increased plasmablast and plasma cell numbers as well as antibody production, with less B-cell death compared to 2D cultures. Class switching of naive CD19+IgD+B-cells toward IgG+ and IgA+B-cells was observed. The formation of large B-cell clusters indicates the formation of GC-like structures. In conclusion, a well-characterized and controllable hydrogel-based human 3D lymphoid model is presented that supports enhanced B-cell survival, proliferation, differentiation, and antibody production.

17.
Front Immunol ; 14: 1327875, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38193077

RESUMEN

Primary COVID-19 vaccination for children, 5-17 years of age, was offered in the Netherlands at a time when a substantial part of this population had already experienced a SARS-CoV-2 infection. While vaccination has been shown effective, underlying immune responses have not been extensively studied. We studied immune responsiveness to one and/or two doses of primary BNT162b2 mRNA vaccination and compared the humoral and cellular immune response in children with and without a preceding infection. Antibodies targeting the original SARS-CoV-2 Spike or Omicron Spike were measured by multiplex immunoassay. B-cell and T-cell responses were investigated using enzyme-linked immunosorbent spot (ELISpot) assays. The activation of CD4+ and CD8+ T cells was studied by flowcytometry. Primary vaccination induced both a humoral and cellular adaptive response in naive children. These responses were stronger in those with a history of infection prior to vaccination. A second vaccine dose did not further boost antibody levels in those who previously experienced an infection. Infection-induced responsiveness prior to vaccination was mainly detected in CD8+ T cells, while vaccine-induced T-cell responses were mostly by CD4+ T cells. Thus, SARS-CoV-2 infection prior to vaccination enhances adaptive cellular and humoral immune responses to primary COVID-19 vaccination in children. As most children are now expected to contract infection before the age of five, the impact of infection-induced immunity in children is of high relevance. Therefore, considering natural infection as a priming immunogen that enhances subsequent vaccine-responsiveness may help decision-making on the number and timing of vaccine doses.


Asunto(s)
COVID-19 , Inmunidad Humoral , Niño , Humanos , COVID-19/prevención & control , Linfocitos T CD8-positivos , Vacuna BNT162 , Vacunas contra la COVID-19 , SARS-CoV-2 , Vacunación
19.
Front Immunol ; 13: 1031924, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466865

RESUMEN

Respiratory infectious diseases encountered early in life may result in life-threatening disease in neonates, which is primarily explained by the relatively naive neonatal immune system. Whereas vaccines are not readily available for all infectious diseases, vaccinations have greatly reduced childhood mortality. However, repeated vaccinations are required to reach protective immunity in infants and not all vaccinations are effective at young age. Moreover, protective adaptive immunity elicited by vaccination wanes more rapidly at young age compared to adulthood. The infant adaptive immune system has previously been considered immature but this paradigm has changed during the past years. Recent evidence shows that the early life adaptive immune system is equipped with a strong innate-like effector function to eliminate acute pathogenic threats. These strong innate-like effector capacities are in turn kept in check by a tolerogenic counterpart of the adaptive system that may have evolved to maintain balance and to reduce collateral damage. In this review, we provide insight into these aspects of the early life's adaptive immune system by addressing recent literature. Moreover, we speculate that this shift from innate-like and tolerogenic adaptive immune features towards formation of immune memory may underlie different efficacy of infant vaccination in these different phases of immune development. Therefore, presence of innate-like and tolerogenic features of the adaptive immune system may be used as a biomarker to improve vaccination strategies against respiratory and other infections in early life.


Asunto(s)
Sistema Inmunológico , Vacunación , Lactante , Recién Nacido , Humanos , Adulto , Niño , Inmunidad Adaptativa
20.
Viruses ; 14(7)2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35891550

RESUMEN

Omicron BA.1 variant can readily infect people with vaccine-induced or naturally acquired SARS-CoV-2 immunity facilitated by escape from neutralizing antibodies. In contrast, T-cell reactivity against the Omicron BA.1 variant seems relatively well preserved. Here, we studied the preexisting T cells elicited by either vaccination with the mRNA-based BNT162b2 vaccine or by natural infection with ancestral SARS-CoV-2 for their cross-reactive potential to 20 selected CD4+ T-cell epitopes of spike-protein-harboring Omicron BA.1 mutations. Although the overall memory CD4+ T-cell responses primed by the ancestral spike protein was still preserved generally, we show here that there is also a clear loss of memory CD4+ T-cell cross-reactivity to immunodominant epitopes across the spike protein due to Omicron BA.1 mutations. Complete or partial loss of preexisting T-cell responsiveness was observed against 60% of 20 nonconserved CD4+ T-cell epitopes predicted to be presented by a broad set of common HLA class II alleles. Monitoring such mutations in circulating strains helps predict which virus variants may escape previously induced cellular immunity and could be of concern.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Linfocitos T , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/inmunología , COVID-19/prevención & control , Epítopos de Linfocito T/genética , Humanos , Glicoproteínas de Membrana , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Linfocitos T/inmunología , Proteínas del Envoltorio Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA