Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 12(32): 6827-40, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27447288

RESUMEN

The synthesis and characterisation of the nonsymmetric liquid crystal dimer, 1-(4-cyanobiphenyl-4'-yloxy)-6-(4-cyanobiphenyl-4'-yl)hexane (CB6OCB) is reported. An enantiotropic nematic (N)-twist-bend nematic (NTB) phase transition is observed at 109 °C and a nematic-isotropic phase transition at 153 °C. The NTB phase assignment has been confirmed using polarised light microscopy, freeze fracture transmission electron microscopy (FFTEM), (2)H-NMR spectroscopy, and X-ray diffraction. The effective molecular length in both the NTB and N phases indicates a locally intercalated arrangement of the molecules, and the helicoidal pitch length in the NTB phase is estimated to be 8.9 nm. The surface anchoring properties of CB6OCB on a number of aligning layers is reported. A Landau model is applied to describe high-resolution heat capacity measurements in the vicinity of the NTB-N phase transition. Both the theory and heat capacity measurements agree with a very weak first-order phase transition. A complementary extended molecular field theory was found to be in suggestive accord with the (2)H-NMR studies of CB6OCB-d2, and those already known for CB7CB-d4. These include the reduced transition temperature, TNTBN/TNI, the order parameter of the mesogenic arms in the N phase close to the NTB-N transition, and the order parameter with respect to the helix axis which is related to the conical angle for the NTB phase.

2.
Phys Rev E ; 93(6): 062705, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27415332

RESUMEN

We report a comprehensive dielectric characterization of a liquid crystalline binary mixture composed of the symmetric mesogenic dimer CB7CB and the nonsymmetric mesogenic dimer FFO9OCB. In addition to the high-temperature nematic phase, such a binary mixture shows a twist-bend nematic phase at room temperature which readily vitrifies on slow cooling. Changes in the conformational distribution of the dimers are reflected in the dielectric permittivity and successfully analyzed by means of an appropriate theoretical model. It is shown that the dielectric spectra of the mixture reflect the different molecular dipole properties of the components, resembling in the present case the characteristic dielectric spectra of nonsymmetric dimers. Comparison of the nematic and twist-bend nematic phases reveals that molecular dynamics are similar despite the difference in the molecular environment.

3.
Artículo en Inglés | MEDLINE | ID: mdl-26764709

RESUMEN

The nature of the nematic-nematic phase transition in the liquid crystal dimer 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane (CB9CB) has been investigated using techniques of calorimetry, dynamic dielectric response measurements, and (2)H NMR spectroscopy. The experimental results for CB9CB show that, like the shorter homologue CB7CB, the studied material exhibits a normal nematic phase, which on cooling undergoes a transition to the twist-bend nematic phase (N(TB)), a uniaxial nematic phase, promoted by the average bent molecular shape, in which the director tilts and precesses describing a conical helix. Modulated differential scanning calorimetry has been used to analyze the nature of the N(TB)-N phase transition, which is found to be weakly first order, but close to tricritical. Additionally broadband dielectric spectroscopy and (2)H magnetic resonance studies have revealed information on the structural characteristics of the recently discovered twist-bend nematic phase. Analysis of the dynamic dielectric response in both nematic phases has provided an estimate of the conical angle of the heliconical structure for the N(TB) phase. Capacitance measurements of the electric-field realignment of the director in initially planar aligned cells have yielded values for the splay and bend elastic constants in the high temperature nematic phase. The bend elastic constant is small and decreases with decreasing temperature as the twist-bend phase is approached. This behavior is expected theoretically and has been observed in materials that form the twist-bend nematic phase. (2)H NMR measurements characterize the chiral helical twist identified in the twist-bend nematic phase and also allow the determination of the temperature dependence of the conical angle and the orientational order parameter with respect to the director.

5.
Chemistry ; 11(18): 5362-76, 2005 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16003821

RESUMEN

Several new liquid-crystalline indene and pseudoazulene systems are reported. These molecules give rise to either columnar hexagonal mesophases and/or columnar plastic phases. The unique nature of these compounds stems from their non-classical discotic structure. Although the molecules have rigid aromatic cores, they lack terminal tails and instead the polarizable atoms (S, halogens) or polar groups (CN, CO) act as unusual soft parts. On the basis of many structurally related materials, we conclude that for this type of compound molecular stacking in the solid state is a prerequisite for the appearance of a columnar mesophase, although other intermolecular interactions within the layers are also important in establishing liquid-crystalline order. The behavior reported for these mesomorphic molecules opens up new possibilities in the search for related molecular interactions that might be useful for the construction of supramolecular architectures with particular properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA