RESUMEN
Age-related macular degeneration (AMD) is a major cause of vision loss among the elderly in the Western world. Genetic variants in the complement factor H (CFH) gene are associated with AMD, but the functional consequences of many of these variants are currently unknown. In this study, we aimed to determine the effect of 64 rare and low-frequency variants in the CFH gene on systemic levels of factor H (FH) and complement activation marker C3bBbP using plasma samples of 252 carriers and 159 non-carriers. Individuals carrying a heterozygous nonsense, frameshift or missense variant in CFH presented with significantly decreased FH levels and significantly increased C3bBbP levels in plasma compared to non-carrier controls. FH and C3bBbP plasma levels were relatively stable over time in samples collected during follow-up visits. Decreased FH and increased C3bBbP concentrations were observed in carriers compared to non-carriers of CFH variants among different AMD stages, with the exception of C3bBbP levels in advanced AMD stages, which were equally high in carriers and non-carriers. In AMD families, FH levels were decreased in carriers compared to non-carriers, but C3bBbP levels did not differ. Rare variants in the CFH gene can lead to reduced FH levels or reduced FH function as measured by increased C3bBbP levels. The effects of individual variants in the CFH gene reported in this study will improve the interpretation of rare and low-frequency variants observed in AMD patients in clinical practice.
Asunto(s)
Degeneración Macular , Polimorfismo de Nucleótido Simple , Anciano , Factor H de Complemento/genética , Proteínas del Sistema Complemento/genética , Heterocigoto , Humanos , Degeneración Macular/genética , Mutación MissenseRESUMEN
Age-related macular degeneration (AMD) is the principal cause of blindness in the elderly population. A strong effect on AMD risk has been reported for genetic variants at the CFH locus, encompassing complement factor H (CFH) and the complement-factor-H-related (CFHR) genes, but the underlying mechanisms are not fully understood. We aimed to dissect the role of factor H (FH) and FH-related (FHR) proteins in AMD in a cohort of 202 controls and 216 individuals with AMD. We detected elevated systemic levels of FHR-1 (p = 1.84 × 10-6), FHR-2 (p = 1.47 × 10-4), FHR-3 (p = 1.05 × 10-5) and FHR-4A (p = 1.22 × 10-2) in AMD, whereas FH concentrations remained unchanged. Common AMD genetic variants and haplotypes at the CFH locus strongly associated with FHR protein concentrations (e.g., FH p.Tyr402His and FHR-2 concentrations, p = 3.68 × 10-17), whereas the association with FH concentrations was limited. Furthermore, in an International AMD Genomics Consortium cohort of 17,596 controls and 15,894 individuals with AMD, we found that low-frequency and rare protein-altering CFHR2 and CFHR5 variants associated with AMD independently of all previously reported genome-wide association study (GWAS) signals (p = 5.03 × 10-3 and p = 2.81 × 10-6, respectively). Low-frequency variants in CFHR2 and CFHR5 led to reduced or absent FHR-2 and FHR-5 concentrations (e.g., p.Cys72Tyr in CFHR2 and FHR-2, p = 2.46 × 10-16). Finally, we showed localization of FHR-2 and FHR-5 in the choriocapillaris and in drusen. Our study identifies FHR proteins as key proteins in the AMD disease mechanism. Consequently, therapies that modulate FHR proteins might be effective for treating or preventing progression of AMD. Such therapies could target specific individuals with AMD on the basis of their genotypes at the CFH locus.
Asunto(s)
Proteínas Inactivadoras del Complemento C3b/metabolismo , Factor H de Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Predisposición Genética a la Enfermedad , Haplotipos , Degeneración Macular/patología , Polimorfismo de Nucleótido Simple , Estudios de Cohortes , Proteínas Inactivadoras del Complemento C3b/genética , Proteínas del Sistema Complemento/genética , Estudio de Asociación del Genoma Completo , Humanos , Degeneración Macular/etiología , Degeneración Macular/metabolismoRESUMEN
Protein function can be impacted by changes in protein structure stability, but determining which change has impact is complex. Stability can be affected by a large change in the tertiary (3D) structure of the protein or due to free-energy changes caused by single amino acid substitutions. Changes in the DNA sequence can have minor or major impact on protein stability, which can lead to disease. Inherited retinal degenerations are generally caused by single mutations which are mostly located in protein-coding regions, while age-related macular degeneration (AMD) is a complex disorder that can be influenced by some genetic variants impacting proteins involved in the disease, although not all AMD risk variants lead to amino acid changes. Here, we review ways that proteins may be affected, the identification and understanding of these changes, and how to identify causal changes that can be targeted to develop treatments to alleviate retinal degenerative disease.
Asunto(s)
Degeneración Macular , Degeneración Retiniana , Humanos , Degeneración Retiniana/genética , Retina , Degeneración Macular/genética , Mutación , Proteínas/química , Estabilidad ProteicaRESUMEN
Macular degenerations (MDs) are a subgroup of retinal disorders characterized by central vision loss. Knowledge is still lacking on the extent of genetic and nongenetic factors influencing inherited MD (iMD) and age-related MD (AMD) expression. Single molecule Molecular Inversion Probes (smMIPs) have proven effective in sequencing the ABCA4 gene in patients with Stargardt disease to identify associated coding and noncoding variation, however many MD patients still remain genetically unexplained. We hypothesized that the missing heritability of MDs may be revealed by smMIPs-based sequencing of all MD-associated genes and risk factors. Using 17,394 smMIPs, we sequenced the coding regions of 105 iMD and AMD-associated genes and noncoding or regulatory loci, known pseudo-exons, and the mitochondrial genome in two test cohorts that were previously screened for variants in ABCA4. Following detailed sequencing analysis of 110 probands, a diagnostic yield of 38% was observed. This established an ''MD-smMIPs panel," enabling a genotype-first approach in a high-throughput and cost-effective manner, whilst achieving uniform and high coverage across targets. Further analysis will identify known and novel variants in MD-associated genes to offer an accurate clinical diagnosis to patients. Furthermore, this will reveal new genetic associations for MD and potential genetic overlaps between iMD and AMD.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Degeneración Macular , Humanos , Análisis Costo-Beneficio , Enfermedad de Stargardt/genética , Exones , Degeneración Macular/diagnóstico , Degeneración Macular/genética , Mutación , Transportadoras de Casetes de Unión a ATP/genéticaRESUMEN
Genome-wide association studies (GWAS) have identified 52 independent variants at 34 genetic loci that are associated with age-related macular degeneration (AMD), the most common cause of incurable vision loss in the elderly worldwide. However, causal genes at the majority of these loci remain unknown. In this study, we performed whole exome sequencing of 264 individuals from 63 multiplex families with AMD and analyzed the data for rare protein-altering variants in candidate target genes at AMD-associated loci. Rare coding variants were identified in the CFH, PUS7, RXFP2, PHF12 and TACC2 genes in three or more families. In addition, we detected rare coding variants in the C9, SPEF2 and BCAR1 genes, which were previously suggested as likely causative genes at respective AMD susceptibility loci. Identification of rare variants in the CFH and C9 genes in our study validated previous reports of rare variants in complement pathway genes in AMD. We then extended our exome-wide analysis and identified rare protein-altering variants in 13 genes outside the AMD-GWAS loci in three or more families. Two of these genes, SCN10A and KIR2DL4, are of interest because variants in these genes also showed association with AMD in case-control cohorts, albeit not at the level of genome-wide significance. Our study presents the first large-scale, exome-wide analysis of rare variants in AMD. Further independent replications and molecular investigation of candidate target genes, reported here, would assist in gaining novel insights into mechanisms underlying AMD pathogenesis.
Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Degeneración Macular/genética , Canal de Sodio Activado por Voltaje NAV1.8/genética , Receptores KIR2DL4/genética , Anciano , Anciano de 80 o más Años , Exoma/genética , Humanos , Degeneración Macular/patología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Secuenciación del ExomaRESUMEN
Factor I (FI) is one of the main inhibitors of complement activity, and numerous rare coding variants have been reported in patients with age-related macular degeneration, atypical hemolytic uremic syndrome and C3 glomerulopathy. Since many of these variants are of unknown clinical significance, this study aimed to determine the effect of rare coding variants in the complement factor I (CFI) gene on FI expression. We measured FI levels in plasma samples of carriers of rare coding variants and in vitro in the supernatants of epithelial cells expressing recombinant FI. FI levels were measured in 177 plasma samples of 155 individuals, carrying 24 different rare coding variants in CFI. In carriers of the variants p.Gly119Arg, p.Leu131Arg, p.Gly188Ala and c.772G>A (r.685_773del), significantly reduced FI plasma levels were detected. Furthermore, recombinant FI expression levels were determined for 126 rare coding variants. Of these variants 68 (54%) resulted in significantly reduced FI expression in supernatant compared to wildtype (WT). The recombinant protein expression levels correlated significantly with the FI level in plasma of carriers of CFI variants. In this study, we performed the most comprehensive FI expression level analysis of rare coding variants in CFI to date. More than half of CFI variants lead to reduced FI expression, which might impair complement regulation in vivo. Our study will aid the interpretation of rare coding CFI variants identified in clinical practice, which is in particular important in light of patient inclusion in ongoing clinical trials for CFI gene supplementation in AMD.
Asunto(s)
Síndrome Hemolítico Urémico Atípico/genética , Factor I de Complemento/genética , Fibrinógeno/genética , Degeneración Macular/genética , Anciano , Anciano de 80 o más Años , Alelos , Síndrome Hemolítico Urémico Atípico/sangre , Síndrome Hemolítico Urémico Atípico/patología , Femenino , Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad , Genotipo , Heterocigoto , Humanos , Degeneración Macular/sangre , Degeneración Macular/patología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Purpose: A protein quantitative trait locus (pQTL) analysis recently revealed a strong association between hemopexin (HPX) levels and genetic variants at the complement factor H (CFH) locus. In this study, we aimed to determine HPX plasma levels in patients with age-related macular degeneration (AMD) and to compare them with those in controls. We also investigated whether genetic variants at the CFH locus are associated with HPX plasma levels. Methods: HPX levels were quantified in 200 advanced AMD cases and 200 controls using an enzyme-linked immunosorbent assay and compared between the two groups. Furthermore, HPX levels were analyzed per genotype group of three HPX-associated variants (rs61818956, rs10494745, and rs10801582) and four AMD-associated variants (rs794362 [proxy for rs187328863], rs570618, rs10922109, and rs61818924 [proxy for rs61818925]) at the CFH locus. Results: HPX levels were similar in the control group compared with the AMD group. The three variants at the CFH locus, which were previously associated with the HPX levels, showed no association with the HPX levels in our data set. No significant differences in HPX levels were detected between the different genotype groups of AMD-associated variants at the CFH locus. Conclusions: In this study, HPX levels were not associated with AMD or AMD-associated variants at the CFH locus. The finding of a previous pQTL study that variants at the CFH locus were associated with HPX levels was also not confirmed in this study.
Asunto(s)
Hemopexina , Degeneración Macular , Humanos , Hemopexina/genética , Degeneración Macular/genética , Degeneración Macular/metabolismo , Genotipo , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Factores de Transcripción/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
PURPOSE: Age-related maculopathy susceptibility 2 (ARMS2) is considered the most enigmatic of the genes for age-related macular degeneration (AMD). We investigated the phenotypic course and spectrum of AMD for the risk haplotype at the ARMS2 and high-temperature requirement A serine peptidase 1 (HTRA1) locus in a large European consortium. DESIGN: Pooled analysis of 4 case-control and 6 cohort studies. PARTICIPANTS: Individuals (N = 17 204) aged 55 years or older participating in the European Eye Epidemiology consortium. METHODS: Age-related macular degeneration features and macular thickness were determined on multimodal images; data on genetics and phenotype were harmonized. Risks of AMD features for rs3750486 genotypes at the ARMS2/HTRA1 locus were determined by logistic regression and were compared with a genetic risk score (GRS) of 19 variants at the complement pathway. Lifetime risks were estimated with Kaplan-Meier analyses in population-based cohorts. MAIN OUTCOME MEASURES: Age-related macular degeneration features and stage. RESULTS: Of 2068 individuals with late AMD, 64.7% carried the ARMS2/HTRA1 risk allele. For homozygous carriers, the odds ratio (OR) of geographic atrophy was 8.6 (95% confidence interval [CI], 6.5-11.4), of choroidal neovascularization (CNV) was 11.2 (95% CI, 9.4-13.3), and of mixed late AMD was 12.2 (95% CI, 7.3-20.6). Cumulative lifetime risk of late AMD ranged from 4.4% for carriers of the nonrisk genotype to 9.4% and 26.8% for heterozygous and homozygous carriers. The latter received the diagnosis of late AMD 9.6 years (95% CI, 8.0-11.2) earlier than carriers of the nonrisk genotype. The risk haplotype was not associated with hard or soft drusen < 125 µm (OR, 1.2; 95% CI, 0.9-1.7), but risks increased significantly for soft drusen ≥ 125 µm (OR, 2.1; 95% CI, 1.5-3.0), up to an OR of 7.2 (95% CI, 3.8-13.8) for reticular pseudodrusen. Compared with persons with a high GRS for complement, homozygous carriers of ARMS2/HTRA1 showed a higher risk of CNV (OR, 4.1; 95% CI, 3.2-5.4); risks of other characteristics were not different. CONCLUSIONS: Carriers of the risk haplotype at ARMS2/HTRA1 have a particularly high risk of late AMD at a relatively early age. Data suggest that risk variants at ARMS2/HTRA1 act as a strong catalyst of progression once early signs are present. The phenotypic spectrum resembles that of complement genes, only with higher risks of CNV.
Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Drusas Retinianas , Neovascularización Coroidal/genética , Factor H de Complemento/genética , Genotipo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Humanos , Degeneración Macular/diagnóstico , Degeneración Macular/epidemiología , Degeneración Macular/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas/genética , Drusas Retinianas/genética , Factores de RiesgoRESUMEN
Early onset drusen maculopathy (EODM) can lead to advanced macular degeneration at a young age, affecting quality of life. However, the genetic causes of EODM are not well studied. We performed whole genome sequencing in 49 EODM patients. Common genetic variants were analysed by calculating genetic risk scores based on 52 age-related macular generation (AMD)-associated variants, and we analysed rare variants in candidate genes to identify potential deleterious variants that might contribute to EODM development. We demonstrate that the 52 AMD-associated variants contributed to EODM, especially variants located in the complement pathway. Furthermore, we identified 26 rare genetic variants predicted to be pathogenic based on in silico prediction tools or based on reported pathogenicity in literature. These variants are located predominantly in the complement and lipid metabolism pathways. Last, evaluation of 18 genes causing inherited retinal dystrophies that can mimic AMD characteristics, revealed 11 potential deleterious variants in eight EODM patients. However, phenotypic characteristics did not point towards a retinal dystrophy in these patients. In conclusion, this study reports new insights into rare variants that are potentially involved in EODM development, and which are relevant for future studies unravelling the aetiology of EODM.
Asunto(s)
Factor H de Complemento , Degeneración Macular , Factor H de Complemento/genética , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Calidad de Vida , Secuenciación Completa del GenomaRESUMEN
Age-related macular degeneration (AMD) is a disease that affects the macula - the central part of the retina. It is a leading cause of irreversible vision loss in the elderly. AMD onset is marked by the presence of lipid- and protein-rich extracellular deposits beneath the retinal pigment epithelium (RPE), a monolayer of polarized, pigmented epithelial cells located between the photoreceptors and the choroidal blood supply. Progression of AMD to the late nonexudative "dry" stage of AMD, also called geographic atrophy, is linked to progressive loss of areas of the RPE, photoreceptors, and underlying choriocapillaris leading to a severe decline in patients' vision. Differential susceptibility of macular RPE in AMD and the lack of an anatomical macula in most lab animal models has promoted the use of in vitro models of the RPE. In addition, the need for high throughput platforms to test potential therapies has driven the creation and characterization of in vitro model systems that recapitulate morphologic and functional abnormalities associated with human AMD. These models range from spontaneously formed cell line ARPE19, immortalized cell lines such as hTERT-RPE1, RPE-J, and D407, to primary human (fetal or adult) or animal (mouse and pig) RPE cells, and embryonic and induced pluripotent stem cell (iPSC) derived RPE. Hallmark RPE phenotypes, such as cobblestone morphology, pigmentation, and polarization, vary significantly betweendifferent models and culture conditions used in different labs, which would directly impact their usability for investigating different aspects of AMD biology. Here the AMD Disease Models task group of the Ryan Initiative for Macular Research (RIMR) provides a summary of several currently used in vitro RPE models, historical aspects of their development, RPE phenotypes that are attainable in these models, their ability to model different aspects of AMD pathophysiology, and pros/cons for their use in the RPE and AMD fields. In addition, due to the burgeoning use of iPSC derived RPE cells, the critical need for developing standards for differentiating and rigorously characterizing RPE cell appearance, morphology, and function are discussed.
Asunto(s)
Atrofia Geográfica , Células Madre Pluripotentes Inducidas , Degeneración Macular , Adulto , Anciano , Animales , Técnicas de Cultivo de Célula , Atrofia Geográfica/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Degeneración Macular/metabolismo , Ratones , Epitelio Pigmentado de la Retina/metabolismo , PorcinosRESUMEN
Genomic studies in age-related macular degeneration (AMD) have identified genetic variants that account for the majority of AMD risk. An important next step is to understand the functional consequences and downstream effects of the identified AMD-associated genetic variants. Instrumental for this next step are 'omics' technologies, which enable high-throughput characterization and quantification of biological molecules, and subsequent integration of genomics with these omics datasets, a field referred to as systems genomics. Single cell sequencing studies of the retina and choroid demonstrated that the majority of candidate AMD genes identified through genomic studies are expressed in non-neuronal cells, such as the retinal pigment epithelium (RPE), glia, myeloid and choroidal cells, highlighting that many different retinal and choroidal cell types contribute to the pathogenesis of AMD. Expression quantitative trait locus (eQTL) studies in retinal tissue have identified putative causal genes by demonstrating a genetic overlap between gene regulation and AMD risk. Linking genetic data to complement measurements in the systemic circulation has aided in understanding the effect of AMD-associated genetic variants in the complement system, and supports that protein QTL (pQTL) studies in plasma or serum samples may aid in understanding the effect of genetic variants and pinpointing causal genes in AMD. A recent epigenomic study fine-mapped AMD causal variants by determing regulatory regions in RPE cells differentiated from induced pluripotent stem cells (iPSC-RPE). Another approach that is being employed to pinpoint causal AMD genes is to produce synthetic DNA assemblons representing risk and protective haplotypes, which are then delivered to cellular or animal model systems. Pinpointing causal genes and understanding disease mechanisms is crucial for the next step towards clinical translation. Clinical trials targeting proteins encoded by the AMD-associated genomic loci C3, CFB, CFI, CFH, and ARMS2/HTRA1 are currently ongoing, and a phase III clinical trial for C3 inhibition recently showed a modest reduction of lesion growth in geographic atrophy. The EYERISK consortium recently developed a genetic test for AMD that allows genotyping of common and rare variants in AMD-associated genes. Polygenic risk scores (PRS) were applied to quantify AMD genetic risk, and may aid in predicting AMD progression. In conclusion, genomic studies represent a turning point in our exploration of AMD. The results of those studies now serve as a driving force for several clinical trials. Expanding to omics and systems genomics will further decipher function and causality from the associations that have been reported, and will enable the development of therapies that will lessen the burden of AMD.
Asunto(s)
Degeneración Macular , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Proteínas del Sistema Complemento/metabolismo , Coroides/metabolismo , Proteínas/genética , Genómica , Polimorfismo de Nucleótido Simple , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genéticaRESUMEN
Age-related macular degeneration (AMD) is a progressive disease of the macula characterized by atrophy of the retinal pigment epithelium (RPE) and photoreceptor degeneration, leading to severe vision loss at advanced stages in the elderly population. Impaired reverse cholesterol transport (RCT) as well as intracellular lipid accumulation in the RPE are implicated in AMD pathogenesis. Here, we focus on ATP-binding cassette transporter A1 (ABCA1), a major cholesterol transport protein in the RPE, and analyze conditions that lead to ABCA1 dysregulation in induced pluripotent stem cell (iPSC)-derived RPE cells (iRPEs). Our results indicate that the risk-conferring alleles rs1883025 (C) and rs2740488 (A) in ABCA1 are associated with increased ABCA1 mRNA and protein levels and reduced efficiency of cholesterol efflux from the RPE. Hypoxia, an environmental risk factor for AMD, reduced expression of ABCA1 and increased intracellular lipid accumulation. Treatment with a liver X receptor (LXR) agonist led to an increase in ABCA1 expression and reduced lipid accumulation. Our data strengthen the homeostatic role of cholesterol efflux in the RPE and suggest that increasing cellular cholesterol export by stimulating ABCA1 expression might lessen lipid load, improving RPE survival and reducing the risk of developing AMD.
Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Macular , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Anciano , Colesterol/metabolismo , Humanos , Hipoxia/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Degeneración Macular/metabolismo , Epitelio Pigmentado de la Retina/metabolismoRESUMEN
Mutations in PRPH2, encoding peripherin-2, are associated with the development of a wide variety of inherited retinal diseases (IRDs). To determine the causality of the many PRPH2 variants that have been discovered over the last decades, we surveyed all published PRPH2 variants up to July 2020, describing 720 index patients that in total carried 245 unique variants. In addition, we identified seven novel PRPH2 variants in eight additional index patients. The pathogenicity of all variants was determined using the ACMG guidelines. With this, 107 variants were classified as pathogenic, 92 as likely pathogenic, one as benign, and two as likely benign. The remaining 50 variants were classified as variants of uncertain significance. Interestingly, of the total 252 PRPH2 variants, more than half (n = 137) were missense variants. All variants were uploaded into the Leiden Open source Variation and ClinVar databases. Our study underscores the need for experimental assays for variants of unknown significance to improve pathogenicity classification, which would allow us to better understand genotype-phenotype correlations, and in the long-term, hopefully also support the development of therapeutic strategies for patients with PRPH2-associated IRD.
Asunto(s)
Periferinas/genética , Enfermedades de la Retina , Estudios de Asociación Genética , Humanos , Mutación , Mutación Missense , Enfermedades de la Retina/genéticaRESUMEN
Purpose: To evaluate the plasma levels of matrix metalloproteinase 9 (MMP9) and tissue inhibitors of metalloproteinase 3 (TIMP3) in neovascular age-related macular degeneration (nAMD) patients compared to controls, and to explore the potential effect of AMD-associated genetic variants on MMP9 and TIMP3 protein levels. Methods: nAMD and control patients were selected from the European Genetic Database (EUGENDA) based on different genotypes of rs142450006 near MMP9 and rs5754227 near TIMP3. Plasma total MMP9, active MMP9 and TIMP3 levels were measured using the enzyme linked immunosorbent assay (ELISA) and compared between nAMD patients and controls, as well as between different genotype groups. Results: nAMD patients had significantly higher total MMP9 levels compared to controls (median 46.58 versus 26.90 ng/ml; p = 0.0004). In addition, the median MMP9 level in the homozygous genotype group for the AMD-risk allele (44.23 ng/ml) was significantly higher than the median for the heterozygous genotype group (26.90 ng/ml; p = 0.0082) and the median for the homozygous group for the non-risk allele (28.55 ng/ml; p = 0.0355). No differences were detected for the active MMP9. TIMP3 levels did not significantly differ between the AMD and control groups, nor between the different genotype groups for rs5754227. Conclusions: The results of our MMP9 analyses indicate that nAMD patients have on average higher systemic MMP9 levels than control individuals, and that this is partly driven by the rs142450006 variant near MMP9. This finding might be an interesting starting point for further exploration of MMP9 as a therapeutic target in nAMD, particularly among individuals carrying the risk-conferring allele rs142450006.
Asunto(s)
Neovascularización Coroidal/enzimología , Precursores Enzimáticos/sangre , Precursores Enzimáticos/genética , Metaloproteinasa 9 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/genética , Degeneración Macular Húmeda/enzimología , Anciano , Anciano de 80 o más Años , Alelos , Neovascularización Coroidal/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Frecuencia de los Genes , Técnicas de Genotipaje , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Inhibidor Tisular de Metaloproteinasa-3/sangre , Inhibidor Tisular de Metaloproteinasa-3/genética , Degeneración Macular Húmeda/genéticaRESUMEN
PURPOSE: The purpose of this study was to analyze genetic and nongenetic associations with reticular pseudodrusen (RPD) in patients with and without age-related macular degeneration (AMD). METHODS: This case-control study included 2,719 consecutive subjects from the prospective multicenter European Genetic Database (EUGENDA). Color fundus photographs and optical coherence tomography (OCT) scans were evaluated for the presence of AMD and RPD. Association of RPD with 39 known AMD polymorphisms and various nongenetic risk factors was evaluated. Stepwise backward variable selection via generalized linear models (GLMs) was performed based on models including the following: a) age, sex, and genetic factors and b) all predictors. Receiver operating characteristic (ROC) curves and the areas under the curve (AUCs) were determined. RESULTS: RPD were present in 262 cases (no AMD, n = 9 [0.7%; early/intermediate AMD, n = 75 [12.4%]; late AMD, n = 178 [23.8%]). ROC analysis of the genetic model including age, APOE rs2075650, ARMS2 rs10490924, CFH rs800292, CFH rs12144939, CFI rs10033900, COL8A1 rs13081855, COL10A1 rs3812111, GLI3 rs2049622, and SKIV2L rs4296082 revealed an AUC of 0.871. Considering all possible predictors, backward selection revealed a slightly different set of genetic factors, as well as the following nongenetic risk factors: smoking, rheumatoid arthritis, steroids, antiglaucomatous drugs, and past sunlight exposure; the results showed an AUC of 0.886. CONCLUSIONS: RPD share a variety of genetic and nongenetic risk factors with AMD. Future AMD grading systems should integrate RPD as an important risk phenotype.
Asunto(s)
Degeneración Macular , Drusas Retinianas , Estudios de Casos y Controles , Factor H de Complemento/genética , Humanos , Degeneración Macular/complicaciones , Degeneración Macular/epidemiología , Degeneración Macular/genética , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Proteínas/genética , Drusas Retinianas/complicaciones , Drusas Retinianas/genética , Factores de Riesgo , Tomografía de Coherencia ÓpticaRESUMEN
PURPOSE: Age-related macular degeneration (AMD) is a common multifactorial disease in the elderly with a prominent genetic basis. Many risk variants have been identified, but the interpretation remains challenging. We investigated the genetic distribution of AMD-associated risk variants in a large European consortium, calculated attributable and pathway-specific genetic risks, and assessed the influence of lifestyle on genetic outcomes. DESIGN: Pooled analysis of cross-sectional data from the European Eye Epidemiology Consortium. PARTICIPANTS: Seventeen thousand one hundred seventy-four individuals 45 years of age or older participating in 6 population-based cohort studies, 2 clinic-based studies, and 1 case-control study. METHODS: Age-related macular degeneration was diagnosed and graded based on fundus photographs. Data on genetics, lifestyle, and diet were harmonized. Minor allele frequencies and population-attributable fraction (PAF) were calculated. A total genetic risk score (GRS) and pathway-specific risk scores (complement, lipid, extra-cellular matrix, other) were constructed based on the dosage of SNPs and conditional ß values; a lifestyle score was constructed based on smoking and diet. MAIN OUTCOME MEASURES: Intermediate and late AMD. RESULTS: The risk variants with the largest difference between late AMD patients and control participants and the highest PAFs were located in ARMS2 (rs3750846) and CHF (rs570618 and rs10922109). Combining all genetic variants, the total genetic risk score ranged from -3.50 to 4.63 and increased with AMD severity. Of the late AMD patients, 1581 of 1777 (89%) showed a positive total GRS. The complement pathway and ARMS2 were by far the most prominent genetic pathways contributing to late AMD (positive GRS, 90% of patients with late disease), but risk in 3 pathways was most frequent (35% of patients with late disease). Lifestyle was a strong determinant of the outcome in each genetic risk category; unfavorable lifestyle increased the risk of late AMD at least 2-fold. CONCLUSIONS: Genetic risk variants contribute to late AMD in most patients. However, lifestyle factors have a strong influence on the outcome of genetic risk and should be a strong focus in patient management. Genetic risks in ARMS2 and the complement pathway are present in most late AMD patients but are mostly combined with risks in other pathways.
Asunto(s)
Predisposición Genética a la Enfermedad , Estilo de Vida , Degeneración Macular/genética , Polimorfismo de Nucleótido Simple , Vigilancia de la Población , Medición de Riesgo/métodos , Anciano , Estudios de Casos y Controles , Estudios Transversales , Europa (Continente)/epidemiología , Femenino , Frecuencia de los Genes , Humanos , Incidencia , Degeneración Macular/epidemiología , Degeneración Macular/fisiopatología , Masculino , Persona de Mediana Edad , Factores de RiesgoRESUMEN
PURPOSE: To develop a genotype assay to assess associations with common and rare age-related macular degeneration (AMD) risk variants, to calculate an overall genetic risk score (GRS), and to identify potential misdiagnoses with inherited macular dystrophies that mimic AMD. DESIGN: Case-control study. PARTICIPANTS: Individuals (n = 4740) from 5 European cohorts. METHODS: We designed single-molecule molecular inversion probes for target selection and used next generation sequencing to sequence 87 single nucleotide polymorphisms (SNPs), coding and splice-site regions of 10 AMD-(related) genes (ARMS2, C3, C9, CD46, CFB, CFH, CFI, HTRA1, TIMP3, and SLC16A8), and 3 genes that cause inherited macular dystrophies (ABCA4, CTNNA1, and PRPH2). Genetic risk scores for common AMD risk variants were calculated based on effect size and genotype of 52 AMD-associated variants. Frequency of rare variants was compared between late AMD patients and control individuals with logistic regression analysis. MAIN OUTCOME MEASURES: Genetic risk score, association of genetic variants with AMD, and genotype-phenotype correlations. RESULTS: We observed high concordance rates between our platform and other genotyping platforms for the 69 successfully genotyped SNPs (>96%) and for the rare variants (>99%). We observed a higher GRS for patients with late AMD compared with patients with early/intermediate AMD (P < 0.001) and individuals without AMD (P < 0.001). A higher proportion of pathogenic variants in the CFH (odds ratio [OR] = 2.88; P = 0.006), CFI (OR = 4.45; P = 0.005), and C3 (OR = 6.56; P = 0.0003) genes was observed in late AMD patients compared with control individuals. In 9 patients, we identified pathogenic variants in the PRPH2, ABCA4, and CTNNA1 genes, which allowed reclassification of these patients as having inherited macular dystrophy. CONCLUSIONS: This study reports a genotype assay for common and rare AMD genetic variants, which can identify individuals at intermediate to high genetic risk of late AMD and enables differential diagnosis of AMD-mimicking dystrophies. Our study supports sequencing of CFH, CFI, and C3 genes because they harbor rare high-risk variants. Carriers of these variants could be amendable for new treatments for AMD that currently are under development.
Asunto(s)
ADN/genética , Proteínas del Ojo/genética , Predisposición Genética a la Enfermedad , Degeneración Macular/genética , Polimorfismo de Nucleótido Simple , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Proteínas del Ojo/metabolismo , Genotipo , Humanos , Degeneración Macular/diagnóstico , Degeneración Macular/metabolismo , Masculino , Persona de Mediana Edad , Fenotipo , Factores de RiesgoRESUMEN
Age-related macular degeneration (AMD) has been associated with protective genetic variants in the ß1-3 glucosyltransferase (B3GLCT) locus through genome-wide association studies. B3GLCT mediates modification of proteins with thrombospondin type I repeats (TSR) that contain O-linked glucose ß1-3 fucose and C-linked mannose glycosylation motifs. B3GLCT-mediated modification is required for proper secretion of TSR-containing proteins. We aimed to start understanding the role of B3GLCT in AMD by evaluating its effect on glycosylation and secretion of proteins from retinal pigment epithelium (RPE) cells. We generated B3GLCT knockout (KO) RPE cells and analyzed glycosylation and secretion of thrombospondin 1 (TSP1), a protein involved in cellular processes highly relevant to AMD. Glycopeptide analysis confirmed the presence of the glucose-ß1,3-fucose product of B3GLCT on TSP1 in wildtype (WT) cells and its absence in KO cells. C-mannosylation was variably present on WT TSP1 and increased on TSR domains 1 and 3 in KO cells. Secretion of TSP1 was not affected by the absence of B3GLCT, even not when TSP1 was upregulated by TNFα treatment or when TSP1 was overexpressed in HEK293T cells. Future research is needed to elucidate the effect of the observed glycosylation defects in the context of AMD, which might involve functional loss of TSP1 or effects on other TSR proteins.
Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Galactosiltransferasas/genética , Glucosiltransferasas/genética , Degeneración Macular/genética , Epitelio Pigmentado de la Retina/metabolismo , Western Blotting , Sistemas CRISPR-Cas , Línea Celular , Expresión Génica/fisiología , Técnicas de Inactivación de Genes , Glicosilación , Humanos , Degeneración Macular/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masas en TándemRESUMEN
Age-related macular degeneration (AMD) is a progressive disease of the central retina and the leading cause of irreversible vision loss in the western world. The involvement of abnormal complement activation in AMD has been suggested by association of variants in genes encoding complement proteins with disease development. A low-frequency variant (p.P167S) in the complement component C9 (C9) gene was recently shown to be highly associated with AMD; however, its functional outcome remains largely unexplored. In this study, we reveal five novel rare genetic variants (p.M45L, p.F62S, p.G126R, p.T170I and p.A529T) in C9 in AMD patients, and evaluate their functional effects in vitro together with the previously identified (p.R118W and p.P167S) C9 variants. Our results demonstrate that the concentration of C9 is significantly elevated in patients' sera carrying the p.M45L, p.F62S, p.P167S and p.A529T variants compared with non-carrier controls. However, no difference can be observed in soluble terminal complement complex levels between the carrier and non-carrier groups. Comparing the polymerization of the C9 variants we reveal that the p.P167S mutant spontaneously aggregates, while the other mutant proteins (except for C9 p.A529T) fail to polymerize in the presence of zinc. Altered polymerization of the p.F62S and p.P167S proteins associated with decreased lysis of sheep erythrocytes and adult retinal pigment epithelial-19 cells by carriers' sera. Our data suggest that the analyzed C9 variants affect only the secretion and polymerization of C9, without influencing its classical lytic activity. Future studies need to be performed to understand the implications of the altered polymerization of C9 in AMD pathology.
Asunto(s)
Complemento C9/genética , Complemento C9/metabolismo , Variación Genética , Degeneración Macular/genética , Animales , Estudios de Casos y Controles , Complemento C9/farmacología , Eritrocitos/efectos de los fármacos , Células HEK293 , Hemólisis/efectos de los fármacos , Humanos , Polimerizacion , Polimorfismo de Nucleótido Simple , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , OvinosRESUMEN
Birdshot Uveitis (Birdshot) is a rare eye condition that affects HLA-A29-positive individuals and could be considered a prototypic member of the recently proposed 'MHC-I (major histocompatibility complex class I)-opathy' family. Genetic studies have pinpointed the endoplasmic reticulum aminopeptidase (ERAP1) and (ERAP2) genes as shared associations across MHC-I-opathies, which suggests ERAP dysfunction may be a root cause for MHC-I-opathies. We mapped the ERAP1 and ERAP2 haplotypes in 84 Dutch cases and 890 controls. We identified association at variant rs10044354, which mediated a marked increase in ERAP2 expression. We also identified and cloned an independently associated ERAP1 haplotype (tagged by rs2287987) present in more than half of the cases; this ERAP1 haplotype is also the primary risk and protective haplotype for other MHC-I-opathies. We show that the risk ERAP1 haplotype conferred significantly altered expression of ERAP1 isoforms in transcriptomic data (n = 360), resulting in lowered protein expression and distinct enzymatic activity. Both the association for rs10044354 (meta-analysis: odds ratio (OR) [95% CI]=2.07[1.58-2.71], P = 1.24 × 10(-7)) and rs2287987 (OR[95% CI]: =2.01[1.51-2.67], P = 1.41 × 10(-6)) replicated and showed consistent direction of effect in an independent Spanish cohort of 46 cases and 2103 controls. In both cohorts, the combined rs2287987-rs10044354 haplotype associated with Birdshot more strongly than either variant alone [meta-analysis: P=3.9 × 10(-9)]. Finally, we observed that ERAP2 protein expression is dependent on the ERAP1 background across three European populations (n = 3353). In conclusion, a functionally distinct combination of ERAP1 and ERAP2 are a hallmark of Birdshot and provide rationale for strategies designed to correct ERAP function for treatment of Birdshot and MHC-I-opathies more broadly.